
Supplementary Material:
Long-Term Feature Banks for Detailed Video Understanding

Chao-Yuan Wu1,2 Christoph Feichtenhofer2 Haoqi Fan2

Kaiming He2 Philipp Krähenbühl1 Ross Girshick2

1The University of Texas at Austin 2Facebook AI Research (FAIR)

1. Backbone Architecture
We use ResNet-50 I3D [5, 6] with non-local blocks [11]

as the ‘backbone’ of our model. Following Wang et al. [12],
the network only downsamples the temporal dimension by
a factor of two. Table 1 presents the exact specification.

Stage Specification Output size
conv1 5×7×7, 64, stride 1, 2, 2 32×112×112
pool1 1×3×3 max, stride 1, 2, 2 32×56×56

res2

 3×1×1, 64
1×3×3, 64
1×1×1, 256

×3 32×56×56

pool2 2×1×1 max, stride 2, 1, 1 16×56×56

res3

 3(1)×1×1, 128
1 ×3×3, 128
1 ×1×1, 512

×4, NL: 1, 3 16×28×28

res4

 3(1)×1×1, 256
1 ×3×3, 256
1 ×1×1, 1024

×6, NL: 1, 3, 5 16×14×14

res5

 3(1)×1×1, 512
1 ×3×3, 512
1 ×1×1, 2048

×3 16×14×14

Table 1. ResNet-50 NL-I3D [5, 6, 11] backbone used in
this paper. Here we assume input size 32×224×224
(frames×width×height). ‘NL: i0, i1, . . . ’ in stage ‘resj’ denotes
additional non-local blocks [11] after block i0, i1, . . . of resj .
3(1)×1×1 denotes that we either use a 3×1×1 or a 1×1×1 con-
volution. Specifically, we use 3×1×1 for block 0, 2 of res3, block
0, 2, 4 of res4, and block 1 of res5, and use 1×1×1 for the rest.

2. AVA Person Detector
We use Faster R-CNN [9] with a ResNeXt-101-FPN [8,

13] backbone for person detection. The model is pre-trained
on ImageNet for classification, and on COCO for keypoint
detection. The model obtains 56.9 box AP and 67.0 key-
point AP on COCO keypoints. Model parameters are avail-
able in Detectron Model Zoo [4]. We fine-tune the model
on AVA bounding boxes from the training videos for 130k
iterations with an initial learning rate of 0.005, which is de-
creased by a factor of 10 at iteration 100k and 120k. To
improve generalization, we train with random scale jitter-

ing (from 512 to 800 pixels). The final model obtains 93.9
AP@50 on the AVA validation set.

3. LFB vs. Improving Backbones
A large body of recent research focuses on improving 3D

CNN architectures, i.e., improving modeling of short-term
patterns. This paper, on the other hand, aims at improving
the modeling of long-term patterns. How do these two di-
rections impact video understanding differently?

We plot the per-class impact of LFB in Fig. 1, the per-
class impact of improving backbone in Fig. 2, and compare
them in Fig. 3. The error bars are plus/minus one standard
error around the mean, computed from 5 runs. We see that
they lead to improvement in different action classes. Using
LFB leads to improvement in many interactive actions, such
as ‘play musical instrument’ or ‘sing to’, while improving
backbone leads to improvement in more standalone actions,
such as ‘hand shake’ or ‘climb’. This suggests that im-
proving long-term modeling (through LFB) and short-term
modeling (through improving backbone) are complemen-
tary; we believe both are important for future video under-
standing research.

4. AVA STO Regularization
To address the overfitting issue of STO on AVA, we ex-

perimented with a number of regularization techniques, as
summarized in Table 2. We found that dropout [10] was in-
sufficient to regularize an STO, but injecting ‘distractors’,
i.e., randomly sampled features, into the features being at-
tended during training was very effective. We report STO
results with ‘distractor’ training for AVA unless otherwise
stated. For STO on other datasets, we did not observe ob-
vious overfitting.

3D CNN STO STO STO STO
+ 0.5 dropout + 0.8 dropout + distractors

22.1 20.2 20.1 20.9 23.2

Table 2. STO with different regularization techniques on AVA
(mAP in %).

1



sta
nd

watc
h (a

pe
rso

n)

tal
k to

(e.
g.,

sel
f, a

pe
rso

n)

lis
ten

to
(a

pe
rso

n) sit

car
ry/

ho
ld

(an
ob

jec
t)

walk

tou
ch

(an
ob

jec
t)

be
nd

/bo
w

(at
the

wais
t)

lie
/sl

eep

rid
e (e.

g.,
a bik

e,
a car

)

dan
ce

an
sw

er
phon

e

run
/jo

g eat

sm
ok

e

cro
uc

h/k
ne

el

figh
t/h

it (a
pe

rso
n)

rea
d
dri

nk

gra
b (a

pe
rso

n)

mart
ial

art

watc
h (e.

g.,
TV)

sin
g to

(e.
g.,

sel
f, a

pers
on

)

play
music

al
instr

umen
t

dri
ve

(e.
g.,

a car
, a

tru
ck

)

ha
nd

cla
p

op
en

(e.
g.,

a wind
ow

)

hu
g (a

pe
rso

n)
ge

t up

giv
e/s

erv
e ob

jec
t to

pe
rso

n
write

clo
se

(e.
g.,

a do
or,

a bo
x)

lis
ten

(e.
g.,

to
musi

c)

kis
s (a

pe
rso

n)

tak
e ob

jec
t fro

m
pe

rso
n

ha
nd

sha
ke

sai
l bo

at

pu
t do

wn

lift
/pi

ck
up

tex
t on

/lo
ok

at
a cel

lph
on

e

lift
(a

pe
rso

n)

pu
ll (an

ob
jec

t)

pu
sh

(an
ob

jec
t)

ha
nd

wav
e

pu
sh

(an
oth

er
pe

rso
n)

dre
ss/

pu
t on

clo
thi

ng

fal
l do

wn
thr

ow

cli
mb (e.

g.,
a mou

nta
in)

jum
p/l

eap

work
on

a co
mpu

ter
en

ter
sho

ot

hit
(an

ob
jec

t)

tak
e a ph

oto cu
t

tur
n (e.

g.,
a scr

ew
dri

ve
r)
sw

im

po
int

to
(an

ob
jec

t)0

20

40

60

80

LFB (R50-I3D-NL)

3D CNN (R50-I3D-NL)

Figure 1. Impact of LFB. We compare per-class AP of 3D CNN (22.1 mAP) and LFB model (25.5 mAP) on AVA. LFB leads to larger
improvement on interactive actions, e.g., ‘sing to’, ‘play musical instrument’, or ‘work on a computer’. (Bold: 5 classes with the largest
absolute gain. Blue: 5 classes with the largest relative gain. Red: classes with decreased performance. Classes are sorted by frequency. )

sta
nd

watc
h (a

pe
rso

n)

tal
k to

(e.
g.,

sel
f, a

pe
rso

n)

lis
ten

to
(a

pe
rso

n) sit

car
ry/

ho
ld

(an
ob

jec
t)

walk

tou
ch

(an
ob

jec
t)

be
nd

/bo
w

(at
the

wais
t)

lie
/sl

eep

rid
e (e.

g.,
a bik

e,
a car

)
da

nc
e

an
sw

er
ph

on
e

run
/jo

g eat

sm
ok

e

cro
uch

/kneel

figh
t/h

it (a
pe

rso
n)

rea
d
dri

nk

gra
b (a

pe
rso

n)

mart
ial

art

watc
h (e.

g.,
TV)

sin
g to

(e.
g.,

sel
f, a

pers
on

)

pla
y musi

cal
ins

tru
men

t

dri
ve

(e.
g.,

a car
, a

tru
ck

)

ha
nd

cla
p

op
en

(e.
g.,

a wind
ow

)

hu
g (a

pe
rso

n)
ge

t up

giv
e/s

erv
e ob

jec
t to

pe
rso

n
write

clo
se

(e.
g.,

a do
or,

a bo
x)

lis
ten

(e.
g.,

to
musi

c)

kis
s (a

pe
rso

n)

tak
e ob

jec
t fro

m
pe

rso
n

han
d shak

e

sai
l bo

at

pu
t do

wn

lift
/pi

ck
up

tex
t on

/lo
ok

at
a cel

lph
on

e

lift
(a

pe
rso

n)

pu
ll (an

ob
jec

t)

pu
sh

(an
ob

jec
t)

ha
nd

wav
e

pu
sh

(an
oth

er
pe

rso
n)

dre
ss/

pu
t on

clo
thi

ng

fal
l do

wn
thr

ow

cli
mb (e.

g.,
a mou

ntai
n)

jum
p/l

eap

work
on

a co
mpu

ter
en

ter
sho

ot

hit
(an

ob
jec

t)

tak
e a ph

oto cu
t

tur
n (e.

g.,
a scr

ew
dri

ve
r)

sw
im

po
int

to
(an

ob
jec

t)0

20

40

60

80

3D CNN (R101-I3D-NL)

3D CNN (R50-I3D-NL)

Figure 2. Impact of improving backbone. We compare per-class AP of 3D CNN with the default backbone (R50-I3D-NL; 22.1 mAP)
and a stronger backbone (R101-I3D-NL; 23.0 mAP) on AVA. Improving backbone leads to larger improvement in standalone actions, such
as ‘crouch/kneel’, ‘read’, or ‘hand shake’. (Bold: 5 classes with the largest absolute gain. Blue: 5 classes with the largest relative gain.
Red: classes with decreased performance. )

sta
nd

watc
h (a

pe
rso

n)

tal
k to

(e.
g.,

sel
f, a

pe
rso

n)

lis
ten

to
(a

pe
rso

n) sit

car
ry/

ho
ld

(an
ob

jec
t)

walk

tou
ch

(an
ob

jec
t)

be
nd

/bo
w

(at
the

wais
t)

lie
/sl

eep

rid
e (e.

g.,
a bik

e,
a car

)
da

nc
e

an
sw

er
ph

on
e

run
/jo

g eat

sm
ok

e

cro
uc

h/k
ne

el

figh
t/h

it (a
pe

rso
n)

rea
d
dri

nk

gra
b (a

pe
rso

n)

mart
ial

art

watc
h (e.

g.,
TV)

sin
g to

(e.
g.,

sel
f, a

pe
rso

n)

pla
y musi

cal
ins

tru
men

t

dri
ve

(e.
g.,

a car
, a

tru
ck

)

ha
nd

cla
p

op
en

(e.
g.,

a wind
ow

)

hu
g (a

pe
rso

n)
ge

t up

giv
e/s

erv
e ob

jec
t to

pe
rso

n
write

clo
se

(e.
g.,

a do
or,

a bo
x)

lis
ten

(e.
g.,

to
musi

c)

kis
s (a

pe
rso

n)

tak
e ob

jec
t fro

m
pe

rso
n

ha
nd

sha
ke

sai
l bo

at

pu
t do

wn

lift
/pi

ck
up

tex
t on

/lo
ok

at
a cel

lph
on

e

lift
(a

pe
rso

n)

pu
ll (an

ob
jec

t)

pu
sh

(an
ob

jec
t)

ha
nd

wav
e

pu
sh

(an
oth

er
pe

rso
n)

dre
ss/

pu
t on

clo
thi

ng

fal
l do

wn
thr

ow

cli
mb (e.

g.,
a mou

nta
in)

jum
p/l

eap

work
on

a co
mpu

ter
en

ter
sho

ot

hit
(an

ob
jec

t)

tak
e a ph

oto cu
t

tur
n (e.

g.,
a scr

ew
dri

ve
r)

sw
im

po
int

to
(an

ob
jec

t)
−10

0

10

20 Adding LFB

Improving backbone

Figure 3. Adding LFB vs. improving backbone. We compare the absolute improvement (in AP) brought by LFB and the improvement
brought by improving backbone. We see that they lead to improvement in different action classes. This suggests that improving long-term
modeling (through LFB) and short-term modeling (through improving backbone) are complementary; we believe both are important for
future video understanding research.

5. Training Schedule for EPIC-Kitchens

We train the verb models for 36k iterations with 10−5

weight decay and a learning rate of 0.0003, which is then
decreased by 10 times at iteration 28k and 32k. For the
noun models, we train for 50k iterations with weight decay
10−6 and a learning rate of 0.001, which is decreased by 10
times at iteration 40k and 45k.

6. EPIC-Kitchens Inference
We sample training clips such that the center of the clip

falls within a training segment. For testing, we sample one
center clip per segment, resize such that the short side is
256 pixels, and use a single center crop of 256×256. We
compute the probability of an action as the product of the
softmax scores, weighted by a prior µ, i.e.

P (action = (v, n)) ∝ µ(v, n)P (verb = v)P (noun = n),

where µ is a prior estimated as the count of (v, n) pair di-
vided by count of n in training annotations.

2



7. Object Detector for LFB of EPIC-Kitchens
Noun Model

We use Faster R-CNN [9] with ResNeXt-101-FPN [8,
13] backbone for the object detector. The detector is pre-
trained on Visual Genome [7] with 1600 class labels de-
fined in Anderson et al. [1]. We fine-tune this model on
the ‘new’ training split (defined in Baradel et al. [2]) of
EPIC-Kitchens for 90k iterations, with random scale jitter-
ing (from 512 to 800 pixels). We use an initial learning
rate of 0.005, which is decreased by a factor of 10 at itera-
tion 60k and 80k. The final model achieves 2.4 AP on the
‘new’ validation split. The AP is low because with the new
train/val split, most of the classes are unseen during train-
ing. In addition, most of the classes have zero instance in
the new, smaller validation set, and we calculate the average
precision of those classes as 0. This is also not compara-
ble to the performance reported in [3], where the model is
trained on the full training set, and evaluated on the unre-
leased test sets.

8. Charades Training Schedule
We train the models to predict the ‘clip-level’ labels, i.e.,

the union of the frame labels that fall into the clip’s tempo-
ral range. We train the baseline 3D CNNs with the default
24k schedule with learning rate 0.02, which is decreased
by a factor of 10 at iteration 20k. To train LFB models,
we use a 2-stage approach following STRG [12]. We first
train the model without the FBO using the 24k schedule,
and then add FBO, freeze backbone, and train for half of
the schedule (12k iterations, so 36k in total). This schedule
helps prevent overfitting that was observed when training
directly with FBO in one stage. For training STO, we ob-
served worse performance with this 2-stage approach, so we
report the STO performance using the default 24k schedule.

9. Charades NL Block Details

R50-I3D-NL R101-I3D-NL
pre-act post-act pre-act post-act

STO 39.0 39.6 40.5 41.0
LFB NL 39.5 40.3 41.5 42.5
3D CNN 38.3 40.3

Table 3. Pre-activation vs. post-activation NL′ on Charades.

We experimented with two variants of NL′ design: a
pre-activation (the default variant described in paper), and
a post-activation variant, where we move ReLU after the
skip connection, and move the layer normalization after the
output linear layer. For both variants, LFB consistently out-
performs STO and baseline 3D CNN (Table 3). We choose
post-activation as default for Charades due to the stronger
performance. For AVA and EPIC-Kitchens, we did not ob-
serve any noticeable difference between the two variants.

References
[1] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson,

S. Gould, and L. Zhang. Bottom-up and top-down atten-
tion for image captioning and visual question answering. In
CVPR, 2018. 3

[2] F. Baradel, N. Neverova, C. Wolf, J. Mille, and G. Mori.
Object level visual reasoning in videos. In ECCV, 2018. 3

[3] D. Damen, H. Doughty, G. M. Farinella, S. Fidler,
A. Furnari, E. Kazakos, D. Moltisanti, J. Munro, T. Perrett,
W. Price, et al. Scaling egocentric vision: The EPIC-kitchens
dataset. In ECCV, 2018. 3

[4] R. Girshick, I. Radosavovic, G. Gkioxari, P. Dollár, and
K. He. Detectron, 2018. 1

[5] C. Gu, C. Sun, D. A. Ross, C. Vondrick, C. Pantofaru, Y. Li,
S. Vijayanarasimhan, G. Toderici, S. Ricco, R. Sukthankar,
et al. AVA: A video dataset of spatio-temporally localized
atomic visual actions. In CVPR, 2018. 1

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016. 1

[7] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz,
S. Chen, Y. Kalantidis, L.-J. Li, D. A. Shamma, et al. Vi-
sual genome: Connecting language and vision using crowd-
sourced dense image annotations. IJCV, 2017. 3

[8] T.-Y. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and
S. J. Belongie. Feature pyramid networks for object detec-
tion. In CVPR, 2017. 1, 3

[9] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-
wards real-time object detection with region proposal net-
works. In NIPS, 2015. 1, 3

[10] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: a simple way to prevent neural
networks from overfitting. JMLR, 2014. 1

[11] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural
networks. In CVPR, 2018. 1

[12] X. Wang and A. Gupta. Videos as space-time region graphs.
In ECCV, 2018. 1, 3

[13] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated
residual transformations for deep neural networks. In CVPR,
2017. 1, 3

3


