Course material
Dog vs cat dataset (used in most ipython notebooks)
Background | 78 min | |||||
---|---|---|---|---|---|---|
Background | pdf key | 2 min | ||||
Linear Algebra and Gradients | pdf key | 19 min | ||||
Probability, Likelihood, Sampling, and Expectation | pdf key | 16 min | ||||
Tensors | pdf key | 5 min | ||||
Data as Tensors | ipynb html | 9 min | ||||
Broadcasting | ipynb html | 11 min | ||||
Setup and Tensorboard | ipynb html | 15 min | ||||
Summary | pdf key | 2 min | ||||
First Example | 107 min | |||||
Linear Classifiers and Regression | pdf key | 7 min | ||||
Linear Regression | pdf key | 6 min | ||||
Linear Classification | pdf key | 8 min | ||||
Linear Classification in Action | ipynb html | 13 min | ||||
Linear Multi-class Classification | pdf key | 11 min | ||||
Optimization and Gradient Descent | pdf key | 12 min | ||||
Gradient Descent in Action | ipynb html | 10 min | ||||
Computation Graphs | pdf key | 6 min | ||||
Building a Computation Graph | ipynb html | 10 min | ||||
Gradient Computation on Computation Graphs | pdf key | 10 min | ||||
Back Propagation in Action | ipynb html | 12 min | ||||
Summary | pdf key | 2 min | ||||
Deep Networks | 135 min | |||||
Beyond Linear Models | pdf key | 2 min | ||||
Limitations of Linear Models | pdf key | 9 min | ||||
Non-linearities (ReLU) | pdf key | 11 min | ||||
Output Representations | pdf key | 9 min | ||||
Loss Functions | pdf key | 8 min | ||||
Building a Deep Network in PyTorch | ipynb html | 15 min | ||||
Optimization of Deep Networks | pdf key | 6 min | ||||
Stochastic Gradient Descent | pdf key | 11 min | ||||
Mini-batches | pdf key | 7 min | ||||
Momentum | pdf key | 7 min | ||||
Optimization in PyTorch | ipynb html | 20 min | ||||
What Is a Layer? | pdf key | 6 min | ||||
Activation Functions | pdf key | 15 min | ||||
Hyper-parameters | pdf key | 2 min | ||||
Summary, a Practical Guide to Deep Network Design | pdf key | 7 min | ||||
Convolutional Networks | 172 min | |||||
Images and Structure | pdf key | 4 min | ||||
High Dimensional Inputs | pdf key | 4 min | ||||
Convolutions | pdf key | 22 min | ||||
Convolutional Network in PyTorch | ipynb html | 8 min | ||||
Convolutional Operators and Their Structure | pdf key | 21 min | ||||
Average Pooling | pdf key | 6 min | ||||
Max Pooling | pdf key | 6 min | ||||
Convolutional Operations in PyTorch | ipynb html | 7 min | ||||
Receptive Fields | pdf key | 12 min | ||||
Design Principles of Convolutional Networks | pdf key | 16 min | ||||
Building Efficient Convolutional Networks | ipynb html | 13 min | ||||
Deep Representations and Exploiting the Structure of the Data | pdf key | 10 min | ||||
Examining the Structure of Deep Networks | ipynb html | 15 min | ||||
Dilation | pdf key | 9 min | ||||
Up-Convolution | pdf key | 11 min | ||||
Summary | pdf key | 5 min | ||||
Making It Work | 307 min | |||||
Practical Deep Learning | pdf key | 7 min | ||||
Looking at Your Data | pdf key | 6 min | ||||
Training, Validation, and Test Sets | pdf key | 14 min | ||||
Distribution of Data | ipynb html | 12 min | ||||
Network Initialization | pdf key | 12 min | ||||
Random Initialization | pdf key | 9 min | ||||
Xavier and Kaiming Initialization | pdf key | 20 min | ||||
Initialization in PyTorch | ipynb html | 5 min | ||||
Optimization | pdf key | 2 min | ||||
Input Normalization | pdf key | 12 min | ||||
Vanishing and Exploding Gradients | pdf key | 12 min | ||||
Normalization | pdf key | 2 min | ||||
Batch Normalization | pdf key | 9 min | ||||
Layer Normalization | pdf key | 3 min | ||||
Instance Normalization | pdf key | 3 min | ||||
Group Normalization and Local Response Normalization | pdf key | 6 min | ||||
Where to Add Normalizations? | pdf key | 8 min | ||||
Normalizations in PyTorch | ipynb html | 5 min | ||||
Residual Connections | pdf key | 13 min | ||||
Residual Connections in Practice | ipynb html | 8 min | ||||
Optimization Algorithms | pdf key | 10 min | ||||
Learning Rate | pdf key | 9 min | ||||
Learning Rate Schedules in PyTorch | ipynb html | 10 min | ||||
Open Problem: Pruning and Compression | pdf key | 12 min | ||||
Overfitting and How to Detect It | pdf key | 7 min | ||||
Early Stopping | pdf key | 3 min | ||||
Data Augmentation | pdf key | 12 min | ||||
Dropout | pdf key | 11 min | ||||
Weight Decay | pdf key | 6 min | ||||
Ensembles | pdf key | 8 min | ||||
Reducing Overfitting | repo | 20 min | ||||
Transfer Learning | pdf key | 9 min | ||||
Open Problem: Understanding Generalization | pdf key | 13 min | ||||
Summary, a Practical Guide to Deep Network Optimization | pdf key | 11 min | ||||
Computer Vision | 254 min | |||||
Computer Vision Tasks | pdf key | 15 min | ||||
Image Classification | pdf key | 13 min | ||||
Case Study: AlexNet | pdf key | 19 min | ||||
Case Study: VGG | pdf key | 11 min | ||||
1x1 Convolutions and Factorization | pdf key | 7 min | ||||
Case Study: Network in Network | pdf key | 3 min | ||||
Case Study: Inception Architecture | pdf key | 8 min | ||||
Case Study: Residual Networks | pdf key | 11 min | ||||
Factorization and Light-weight Networks | pdf key | 5 min | ||||
Case Study: MobileNet | pdf key | 5 min | ||||
Using Pre-trained Architectures | ipynb html | 11 min | ||||
Object Detection | pdf key | 11 min | ||||
Case Study: RCNN | pdf key | 13 min | ||||
Case Study: Faster RCNN | pdf key | 14 min | ||||
Case Study: RetinaNet | pdf key | 10 min | ||||
Segmentation | pdf key | 10 min | ||||
Case Study: FCN | pdf key | 11 min | ||||
Case Study: Dilated Convolutional Networks | pdf key | 10 min | ||||
Case Study: Mask RCNN | pdf key | 9 min | ||||
Open Problem: Object Representations | pdf key | 12 min | ||||
Temporal Models | pdf key | 6 min | ||||
3D Convolutions | pdf key | 5 min | ||||
2+1D Convolutions | pdf key | 3 min | ||||
Case Study: I3D | pdf key | 6 min | ||||
Open Problem: Effective Temporal Operations | pdf key | 10 min | ||||
Open Problem: What Should We Infer or Label? | pdf key | 12 min | ||||
Summary | pdf key | 4 min | ||||
Reinforcement Learning | 210 min | |||||
Acting in an Environment | pdf key | 23 min | ||||
Acting in SuperTuxKart | ipynb html | 17 min | ||||
Imitation Learning | pdf key | 11 min | ||||
Dagger | pdf key | 8 min | ||||
Dagger vs Imitation Learning | ipynb html | 30 min | ||||
Non-differentiability | pdf key | 13 min | ||||
REINFORCE | pdf key | 11 min | ||||
Implementing REINFORCE | ipynb html | 30 min | ||||
Policy Gradient | pdf key | 20 min | ||||
Gradient Free Optimization | pdf key | 17 min | ||||
Gradient Free Optimization in PyTorch | ipynb html | 13 min | ||||
Open Problem: Structure Vs Data | pdf key | 13 min | ||||
Summary | pdf key | 5 min | ||||
Sequence Modeling | 131 min | |||||
Sequence Models | pdf key | 6 min | ||||
Recurrent Neural Networks | pdf key | 16 min | ||||
Training Recurrent Networks | pdf key | 14 min | ||||
LSTMs and GRUs | pdf key | 15 min | ||||
Temporal Convolutions | pdf key | 16 min | ||||
Sampling in Sequence Models | pdf key | 10 min | ||||
Case Study: WaveNet | pdf key | 12 min | ||||
Sequence Models in PyTorch | ipynb html | 20 min | ||||
Attention and Transformers | pdf key | 16 min | ||||
Summary | pdf key | 6 min | ||||
Special Topics | 156 min | |||||
Embedding Learning | 38 min | |||||
Learning with an Expanding Set of Labels | pdf key | 4 min | ||||
Embedding Learning | pdf key | 7 min | ||||
Contrastive Losses | pdf key | 8 min | ||||
Triplet Losses | pdf key | 5 min | ||||
Selecting Training Examples | pdf key | 11 min | ||||
Summary | pdf key | 4 min | ||||
Generative Models | 80 min | |||||
Image Generation | pdf key | 3 min | ||||
Autoencoders | pdf key | 9 min | ||||
Variational Autoencoders | pdf key | 12 min | ||||
Transforming Noise | pdf key | 4 min | ||||
Generative Adversarial Networks | pdf key | 11 min | ||||
Pix2Pix | pdf key | 5 min | ||||
CycleGan | pdf key | 10 min | ||||
Image Editing | pdf key | 5 min | ||||
Style Transfer | pdf key | 11 min | ||||
Open Problem: Understanding Generative Models and Invariances | pdf key | 8 min | ||||
Summary | pdf key | 2 min | ||||
Adversarial Attacks | 38 min | |||||
Fooling Deep Networks | pdf key | 5 min | ||||
Finding Adversarial Examples | pdf key | 11 min | ||||
Defense Through Data Augmentation | pdf key | 5 min | ||||
White vs Black Box Attacks | pdf key | 7 min | ||||
Open Problem: Realistic Attacks and Defenses | pdf key | 9 min | ||||
Summary | pdf key | 2 min | ||||
Final Words | 39 min | |||||
Open Problem: Bias, Fairness, and Ethics in Deep Learning | pdf key | 29 min | ||||
Course Summary and Further Topics | pdf key | 10 min |