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Abstract
Training robust deep video representations has proven to

be much more challenging than learning deep image repre-
sentations. This is in part due to the enormous size of raw
video streams and the high temporal redundancy; the true
and interesting signal is often drowned in too much irrel-
evant data. Motivated by that the superfluous information
can be reduced by up to two orders of magnitude by video
compression (using H.264, HEVC, etc.), we propose to train
a deep network directly on the compressed video.

This representation has a higher information density,
and we found the training to be easier. In addition, the sig-
nals in a compressed video provide free, albeit noisy, motion
information. We propose novel techniques to use them effec-
tively. Our approach is about 4.6 times faster than Res3D
and 2.7 times faster than ResNet-152. On the task of action
recognition, our approach outperforms all the other meth-
ods on the UCF-101, HMDB-51, and Charades dataset.

1. Introduction
Video commands the lion’s share of internet traffic at

70% and rising [24]. Most cell phone cameras now capture
high resolution videos in addition to images. Many real-
world data sources are video based, ranging from inventory
systems at warehouses to self-driving cars or autonomous
drones. Video is also arguably the next frontier in computer
vision, as it captures a wealth of information still images
cannot convey. Videos carry more emotion [32], allow us to
predict the future to a certain extent [23], provide temporal
context and give us better spatial awareness [26]. Unfortu-
nately, very little of this information is currently exploited.

State-of-the-art deep learning models for video analysis
are quite basic. Most of them naı̈vely use convolutional neu-
ral networks (CNNs) designed for images to parse a video
frame by frame. They often demonstrate results no better
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Figure 1: Traditional architectures first decode the video
and then feed it into a network. We propose to use the com-
pressed video directly.

than hand-crafted techniques [16, 42]. So, why did deep
learning not yet make as transformative of an impact on
video tasks, such as action recognition, as it did on images?

We argue that the reason is two-fold. First, videos have
a very low information density, as 1h of 720p video can
be compressed from 222GB raw to 1GB. In other words,
videos are filled with boring and repeating patterns, drown-
ing the ‘true’ and interesting signal. The redundancy makes
it harder for CNNs to extract meaningful information, and
makes the training much slower. Second, with only RGB
images, learning temporal structure is difficult. A vast
body of literature attempts to process videos as RGB im-
age sequences, either with 2D CNNs, 3D CNNs, or recur-
rent neural networks (RNNs), but has yielded limited suc-
cess [16, 40]. Using precomputed optical flow almost al-
ways boosts the performance [2].



To address these issues, we exploit the compressed
representation developed for storage and transmission of
videos rather than operating on the RGB frames (Figure 1).
These compression techniques (like MPEG-4, H.264 etc.)
leverage that successive frames are usually similar. They
retain only a few frames completely and reconstruct other
frames based on offsets, called motion vectors and resid-
ual error, from the complete images. Our model consists of
multiple CNNs that directly operate on the motion vectors,
residuals, in addition to a small number of complete images.

Why is this better? First, video compression removes
up to two orders of magnitude of superfluous information,
making interesting signals prominent. Second, the motion
vectors in video compression provide us the motion infor-
mation that lone RGB images do not have. Furthermore,
the motion signals already exclude spatial variations, e.g.
two people performing the same action in different cloth-
ings or in different lighting conditions exhibit the same mo-
tion signals. This improves generalization, and the lowered
variance further simplifies training. Third, with compressed
video, we account for correlation in video frames, i.e. spa-
tial view plus some small changes over time, instead of i.i.d.
images. Constraining data in this structure helps us tackling
the curse of dimensionality. Last but not least, our method is
also much more efficient as we only look at the true signals
instead of repeatedly processing near-duplicates. Efficiency
is also gained by avoiding to decompress the video, because
video is usually stored or transmitted in the compressed ver-
sion, and access to the motion vectors and residuals are free.

On action recognition datasets UCF-101 [34], HMDB-
51 [18], and Charades [32], our approach significantly out-
performs all other methods that train on traditional RGB im-
ages. Our approach is simple and fast, without using RNNs,
complicated fusion or 3D convolutions. It is 4.6 times faster
than state-of-the-art 3D CNN model Res3D [40], and 2.7
times faster than ResNet-152 [12]. When combined with
scores from a standard temporal stream network, our model
outperforms state-of-the-art methods on all these datasets.

2. Background
In this section we provide a brief overview about video

action recognition and video compression.

2.1. Action Recognition

Traditionally, for video action recognition, the commu-
nity utilized hand-crafted features, such as Histogram of
Oriented Gradients (HOG) [3] or Histogram of Optical
Flow (HOF) [19], both sparsely [19] and densely [43] sam-
pled. While early methods consider independent interest
points across frames, smarter aggregation based on dense
trajectories have been used [25, 41, 42]. Some of these tra-
ditional methods are competitive even today, like iDT which
corrects for camera motion [42].

In the past few years, deep learning has brought signif-
icant improvements to video understanding [6, 16]. How-
ever, the improvements mainly stem from improvements in
deep image representations. Modeling of temporal structure
is still relatively simple — most algorithms subsample a few
frames and perform average pooling to make final predic-
tions [33, 44]. RNNs [6, 47], temporal CNNs [21], or other
feature aggregation techniques [11, 44] on top of CNN fea-
tures have also been explored. However, while introducing
new computation overhead, these methods do not necessar-
ily outperform simple average pooling [44]. Some works
explore 3D CNNs to model the temporal structure [39, 40].
Nonetheless, it results in an explosion of parameters and
computation time and only marginally improves the perfor-
mance [40].

More importantly, evidence suggests that these methods
are not sufficient to capture all temporal structures — using
of pre-computed optical flow almost always boosts the per-
formance [2, 9, 33, 44]. This emphasizes the importance of
using the right input representation and the inadequacy of
RGB frames. Finally, note that all of these methods require
raw video frame-by-frame and cannot exploit the fact that
video is stored in some compressed format.

2.2. Video Compression

The need for efficient video storage and transmission has
led to highly efficient video compression algorithms, such
as MPEG-4, H.264, and HEVC, some of which date back
to 1990s [20]. Most video compression algorithms lever-
age the fact that successive frames are usually very similar.
We can efficiently store one frame by reusing contents from
another frame and only store the difference.

Most modern codecs split a video into I-frames (intra-
coded frames), P-frames (predictive frames) and zero or
more B-frames (bi-directional frames). I-frames are regu-
lar images and compressed as such. P-frames reference the
previous frames and encode only the ‘change’. A part of
the change – termed motion vectors – is represented as the
movements of block of pixels from the source frame to the
target frame at time t, which we denote by T (t). Even after
this compensation for block movement, there can be differ-
ence between the original image and the predicted image at
time t. We denote this residual difference by ∆(t). Putting
it together, a P-frame at time t only comprises of motion
vectors T (t) and a residual ∆(t). This gives the recurrence
relation for reconstructing P-frames as

I
(t)
i = I

(t−1)
i−T (t)

i

+ ∆
(t)
i , (1)

for all pixel i, where I(t) denotes the RGB image at time
t. The motion vectors and the residuals are then passed
through discrete cosine transform (DCT) and entropy-
encoded.
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Figure 2: Original motion vectors and residuals describe
only the change between two frames. Usually the signal
to noise ratio is very low and hard to model. The accu-
mulated motion vectors and residuals consider longer term
difference and show clearer patterns. Assume I-frame is at
t = 0. Motion vectors are plotted in HSV space, where the
H channel encodes the direction of motion, and the S chan-
nel shows the amplitude. For residuals we plot the absolute
values in RGB space. Best viewed in color.

A B-frame may be viewed as a special P-frame, where
motion vectors are computed bi-directionally and may ref-
erence a future frame as long as there are no circles in ref-
erencing. Both B- and P- frames capture only what changes
in the video, and are easier to compress owing to smaller
dynamic range [28]. See Figure 2 for a visualization of the
motion estimates and the residuals. Modeling arbitrary de-
coding order is beyond the scope of this paper. We focus on
videos encoded using only backward references, namely I-
and P- frames.

Features from Compressed Data. Some prior works
have utilized signals from compressed video for detection or
recognition, but only as a non-deep feature [15, 36, 38, 46].
To the best of our knowledge, this is the first work that con-
siders training deep networks on compressed videos. MV-
CNN apply distillation to transfer knowledge from an opti-
cal flow network to a motion vector network [49]. However,
unlike our approach, it does not consider the general setting
of representation learning on a compressed video; it still
needs the entire decompressed video as RGB stream, and it
requires optical flow as an additional supervision.

Equipped with this background, next we will explore
how to utilize the compressed representation, devoid of re-
dundant information, for action recognition.

⊕ ⊕ ⊕ ⊕

t=1 t=2 t=3 t=4 t=4

Figure 3: We trace all motion vectors back to the reference
I-frame and accumulate the residual. Now each P-frame
depends only on the I-frame but not other P-frames.

3. Modeling Compressed Representations
Our goal is to design a computer vision system for action

recognition that operates directly on the stored compressed
video. The compression is solely designed to optimize the
size of the encoding, thus the resulting representation has
very different statistical and structural properties than the
images in a raw video. It is not clear if the successful deep
learning techniques can be adapted to compressed represen-
tations in a straightforward manner. So we ask how to feed
a compressed video into a computer vision system, specifi-
cally a deep network?

Feeding I-frames into a deep network is straightforward
since they are just images. How about P-frames? From Fig-
ure 2 we can see that motion vectors, though noisy, roughly
resemble optical flows. As modeling optical flows with
CNNs has been proven effective, it is tempting to do the
same for motion vectors. The third row of Figure 2 visu-
alizes the residuals. We can see that they roughly give us
a motion boundary in addition to a change of appearance,
such as the change of lighting conditions. Again, CNNs are
well-suited for such patterns. The outputs of corresponding
CNNs from the image, motion vectors, and residual will
have different properties. To combine them, we tried var-
ious fusion strategies, including mean pooling, maximum
pooling, concatenation, convolution pooling, and bilinear
pooling, on both middle layers and the final layer, but with
limited success.

Digging deeper, one can argue that the motion vectors
and residuals alone do not contain the full information of
a P-frame — a P-frame depends on the reference frame,
which again might be a P-frame. This chain continues all
the way back to a preceding I-frame. Treating each P-frame
as an independent observation clearly violates this depen-
dency. A simple strategy to address this is to reuse features
from the reference frame, and only update the features given
the new information. This recurrent definition screams for
RNNs to aggregate features along the chain. However, pre-
liminary experiments suggest the elaborate modeling effort
in vain (see supplementary material for details). The dif-
ficulty arises from the long chain of dependency of the P-
frames. To mitigate this issue, we devise a novel yet simple
back-tracing technique that decouples individual P-frames.
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Figure 4: We decouple the dependencies between P-frames
so that they can be processed in parallel.

Decoupled Model. To break the dependency between
consecutive P-frames, we trace all motion vectors back to
the reference I-frame and accumulate the residual on the
way. In this way, each P-frame depends only on the I-frame
but not other P-frames.

Figure 3 illustrates the back-tracing technique. Given a
pixel at location i in frame t, let µT (t)(i) := i − T (t)

i be
the referenced location in the previous frame. The location
traced back to frame k < t is given by

J (t,k)
i := µT (k+1) ◦ · · · ◦ µT (t)(i). (2)

Then the accumulated motion vectorsD(t) ∈ RH×W×2 and
the accumulated residualsR(t) ∈ RH×W×3 at frame t are

D(t)
i := i− J (t,k)

i , and

R(t)
i := ∆

(k+1)

J (t,k+1)
i

+ · · ·+ ∆
(t−1)
J (t,t−1)

i

+ ∆
(t)
i ,

respectively. This can be efficiently calculated in linear time
through a simple feed forward algorithm, accumulating mo-
tion and residuals as we decode the video. Each P-frame
now has a different dependency

I
(t)
i = I

(0)

i−D(t)
i

+R(t)
i , t = 1, 2, . . . ,

as shown in Figure 4b. Here P-frames depend only on the
I-frame and can be processed in parallel.

A nice side effect of the back-tracing is robustness.
The accumulated signals contain longer-term information,
which is more robust to noise or camera motion. Figure 2
shows the accumulated motion vectors and residuals respec-
tively. They exhibit clearer and smoother patterns than the
original ones.

Proposed Network. Figure 5 shows the graphi-
cal illustration of the proposed model. The input of
our model is an I-frame, followed by T P-frames, i.e.(
I0,D(1),R(1), . . . ,D(T ),R(T )

)
. For notational simplicity

we set t = 0 for the I-frame. Each input source is modeled

ScoresScores Scores

CNN CNN CNN CNNCNN

I-frame P-frame P-frame

Figure 5: Decoupled model. All networks can be trained
independently. Models are shared across P-frames.

by a CNN, i.e.

x
(0)
RGB := φRGB

(
I(0)

)
x
(t)
motion := φmotion

(
D(t)

)
x
(t)
residual := φresidual

(
R(t)

)
While I-frame features x(0)RGB are used as is, P-frame fea-
tures x(t)motion and x(t)residual need to incorporate the informa-
tion from x

(0)
RGB. There are several reasonable candidates

for such a fusion, e.g. maximum, multiplicative or convolu-
tional pooling. We also experiment with transforming RGB
features according to the motion vector. Interestingly, we
found a simple summing of scores to work best (see supple-
mentary material for details). This gives us a model that is
easy to train and flexible for inference.

Implementation. Note that most of the information is
stored in I-frames, and we only need to learn the update
for P-frames. We thus focus most of the computation on
I-frames, and use a much smaller and simpler model to cap-
ture the updates in P-frames. This yields significant sav-
ing in terms of computation, since in modern codecs most
frames are P-frames.

Specifically, we use ResNet-152 (pre-activation) to
model I-frames, and ResNet-18 (pre-activation) to model
the motion vectors and residuals [13]. This offers a good
trade-off between speed and accuracy. For video-level
tasks, we use Temporal Segments [44] to capture long term
dependency, i.e. feature at each step is the average of fea-
tures across k = 3 segments during training.

4. Experiments
We now validate for action recognition that (i) com-

pressed video is a better representation (Section 4.1), lead-
ing to (ii) good accuracy (Section 4.3) and (iii) high speed
(Section 4.2). However, note that the principle of the pro-
posed method can be applied effortlessly to other tasks like
video classification [1], object detection [29], or action lo-
calization [32]. We pick action recognition due to its wide
range of applications and strong baselines.



Datasets and Protocol. We evaluate our method Com-
pressed Video Action Recognition (CoViAR) on three ac-
tion recognition datasets, UCF-101 [34], HMDB-51 [18],
and Charades [32]. UCF-101 and HMDB-51 contain short
(< 10-second) trimmed videos, each of which is annotated
with one action label. Charades contains longer (∼ 30-
second) untrimmed videos. Each video is annotated with
one or more action labels and their intervals (start time, end
time). UCF-101 contains 13,320 videos from 101 action
categories. HMDB-51 contains 6,766 videos from 51 ac-
tion categories. Each dataset has 3 (training, testing)-splits.
We report the average performance of the 3 testing splits un-
less otherwise stated. The Charades dataset contains 9,848
videos split into 7,985 training and 1,863 test videos. It
contains 157 action classes.

During testing we uniformly sample 25 frames, each
with flips plus 5 crops, and then average the scores for fi-
nal prediction. On UCF-101 and HMDB-51 we use tem-
poral segments, and perform the averaging before softmax
following TSN [44]. On Charades we use mean average
precision (mAP) and weighted average precision (wAP) to
evaluate the performance, following previous work [31].

Training Details. Following TSN [44], we resize UCF-
101 and HMDB-51 videos to 340× 256. As Charades con-
tains both portrait and landscape videos, we resize them to
256 × 256. Our models are pre-trained on the ILSVRC
2012-CLS dataset [4], and fine-tuned using Adam [17] with
a batch size of 40. Learning rate starts from 0.001 for UCF-
101/HMDB-51 and 0.03 for Charades. It is divided by 10
when the accuracy plateaus. Pre-trained layers use a 100×
smaller learning rate. We apply color jittering and ran-
dom cropping to 224×224 for data augmentation following
TSN [44]. Where available, we select the hyper-parameters
on splits other than the tested one. We use MPEG-4 en-
coded videos, which have on average 11 P-frames for every
I-frame. Optical flow models use TV-L1 flows [48].

4.1. Ablation Study
Here we study the benefits of using compressed repre-

sentations over RGB images. We focus on UCF-101 and
HMDB-51, as they are two of the most well-studied action
recognition datasets. Table 1 presents a detailed analysis.
On both datasets, training on compressed videos signifi-
cantly outperforms training on RGB frames. In particular, it
provides 5.8% and 2.7% absolute improvement on HMDB-
51 and UCF-101 respectively.

Quite surprisingly, while residuals contribute to a very
small amount of data, it alone achieves good accuracy. Mo-
tion vectors alone perform not as well, as they do not con-
tain spatial details. However, they offer information orthog-
onal to what still images provide. When added to other
streams, it significantly boosts the performance. Note that
we use only I-frames as full images, which is a small subset
of all frames, yet CoViAR achieves good performance.

I M R I+M I+R I+M+R (gain)

UCF-101
Split 1 88.4 63.9 79.9 90.4 90.0 90.8 (+2.4)
Split 2 87.4 64.6 80.8 89.9 89.6 90.5 (+3.1)
Split 3 87.3 66.6 82.1 89.6 89.4 90.0 (+2.7)
Average 87.7 65.0 80.9 89.9 89.7 90.4 (+2.7)

HMDB-51
Split 1 54.1 37.8 44.6 60.3 55.9 60.4 (+6.3)
Split 2 51.9 38.7 43.1 57.9 54.2 58.2 (+6.3)
Split 3 54.1 39.7 44.4 58.5 55.6 58.7 (+4.6)
Average 53.3 38.8 44.1 58.9 55.2 59.1 (+5.8)

Table 1: Action recognition accuracy on UFC-101 [34] and
HMDB-51 [18]. Here we compare training with different
sources of information. “+” denotes score fusion of mod-
els. I: I-frame RGB image. M: motion vectors. R: residu-
als. The bold numbers indicate the best and the underlined
numbers indicate the second best performance.

M R I+M I+R I+M+R

Original 58.3 79.0 90.0 89.8 90.4
Accumulated 63.9 79.9 90.4 90.0 90.8

Table 2: Action recognition accuracy on UFC-101 [34]
(Split 1). The two rows show the performance of the models
trained using the original motion vectors/residuals and the
models using the accumulated ones respectively. I: I-frame
RGB image. M: motion vectors. R: residuals.

Accumulated Motion Vectors and Residuals. Our
back-tracing technique not only simplifies the dependency
but also results in clearer patterns to model. This improves
the performance, as shown in Table 2. On the first split of
UCF-101, our accumulation technique provides 5.6% im-
provement on the motion vector stream network and on
the full model, 0.4% improvement (4.2% error reduction).
Performance of the residual stream also improves by 0.9%
(4.3% error reduction).

Visualizations. In Figure 7, we qualitatively study the
RGB and compressed representations of two videos of the
same action in t-SNE [22] space. We can see that in RGB
space the two videos are clearly separated, and in motion
vector and residual space they overlap. This suggests that
a RGB-image based model needs to learn the two patterns
separately, while a compressed-video based model sees a
shared representation for videos of the same action, making
training and generalization easier.

In addition, note that the two ways of the RGB trajecto-
ries overlap, showing that RGB images cannot distinguish
between the up-moving and down-moving motion. On the
other hand, compressed signals preserve motion. The tra-
jectories thus form circles instead of going back and forth
on the same path.



Accuracy (%)
GFLOPs UCF-101 HMDB-51

ResNet-50 [8] 3.8 82.3 48.9
ResNet-152 [8] 11.3 83.4 46.7
C3D [39] 38.5 82.3 51.6
Res3D [40] 19.3 85.8 54.9
CoViAR 4.2 90.4 59.1

Table 3: Network computation complexity and accuracy of
each method. Our method is 4.6x more efficient than state-
of-the-art 3D CNN, while being much more accurate.

Preprocess CNN CNN
(sequential) (concurrent)

Two-stream
BN-Inception 75.0 1.6 0.9
ResNet-152 75.0 7.5 4.0

CoViAR 2.87/0.46 1.3 0.3

Table 4: Speed (ms) per frame. CoViAR is fast in both pre-
processing and CNN computation. Its preprocessing speed
is presented for both single-thread / multi-thread settings.

4.2. Speed and Efficiency

Our method is efficient because the computation on the
I-frame is shared across multiple frames, and the compu-
tation on P-frames is cheaper. Table 3 compares the CNN
computational cost of our method with state-of-the-art 2D
and 3D CNN architectures. Since for our model the P-
and I-frame computational costs are different, we report the
average GFLOPs over all frames. As shown in the table,
CoViAR is 2.7 times faster than ResNet-152 [12] and is 4.6
times more than Res3D [40], while being significantly more
accurate.

A more detailed speed analysis is presented in Table 4.
The preprocessing time of the two-stream methods, i.e. op-
tical flow computation, is measured on a Tesla P100 GPU
with an implementation of the TV-L1 flow algorithm from
OpenCV. Our preprocessing, i.e. the calculation of the ac-
cumulated motion vectors and residuals, is measured on In-
tel E5-2698 v4 CPUs. CNN time is measured on the same
P100 GPU. We can see that the optical flow computation
is the bottleneck for two-stream networks, even with low-
resolution 256 × 340 videos. Our preprocessing is much
faster despite our CPU-only implementation.

For CNN time, we consider both settings where (i) we
can forward multiple CNNs at the same time, and (ii) we do
it sequentially. For both settings, our method is significantly
faster than traditional methods. Overall, our method can be
up to 100 times faster than traditional methods with multi-
thread preprocessing, running at 1,300 frames per second.
Figure 6 summarizes the results. CoViAR achieves the best
efficiency and good accuracy, while requiring a far lesser
amount of data.
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Figure 6: Speed and accuracy on UCF-101 [34], compared
to Two-stream Network [33], Res3D [40], and ResNet-152
[12] trained on RGB frames. Node size denotes the input
data size. Training on compressed videos is both accurate
and efficient.

UCF-101 HMDB-51
CoViAR Flow CoViAR CoViAR Flow CoViAR

+flow +flow

Split 1 90.8 87.7 94.0 60.4 61.8 71.5
Split 2 90.5 90.2 95.4 58.2 63.7 69.4
Split 3 90.0 89.1 95.2 58.7 64.2 69.7
Average 90.4 89.0 94.9 59.1 63.2 70.2

Table 5: Action recognition accuracy on UFC-101 [34] and
HMDB-51 [18]. Combining our model with a temporal-
stream network achieves state-of-the-art performance.

4.3. Accuracy

We now compare the accuracy of CoViAR with state-of-
the-art models in Table 6. For fair comparison, here we fo-
cus on models using the same pre-training dataset, ILSVRC
2012-CLS [4]. While pre-training using Kinetics yields bet-
ter performance [2], since it is larger and more similar to
the datasets used in this paper, those results are not directly
comparable.

From the upper part of the table, we can see that
our model significantly outperforms traditional RGB-image
based methods. C3D [39], Res3D [40], P3D ResNet [27],
and I3D [2] consider 3D convolution to learn temporal
structures. Karpathy et al. [16] and TLE [5] consider more
complicated fusions and pooling. MV-CNN [49] apply dis-
tillation to transfer knowledge from an optical-flow-based
model. Our method uses much faster 2D CNNs plus simple
late fusion without additional supervision, and still signifi-
cantly outperforms these methods.

†Despite our best efforts, we were not able to reproduce the perfor-
mance reported in the original paper. Here we report the performance
based on our implementation. For fair comparison, we use the same data
augmentation and architecture as ours. Training follows the 2-stage pro-



UCF-101 HMDB-51

Without optical flow
Karpathy et al. [16] 65.4 -
ResNet-50 [12] (from ST-Mult [8]) 82.3 48.9
ResNet-152 [12] (from ST-Mult [8]) 83.4 46.7
C3D [39] 82.3 51.6
Res3D [40] 85.8 54.9
TSN (RGB-only) [44]* 85.7 -
TLE (RGB-only) [5]† 87.9 54.2
I3D (RGB-only) [2]* 84.5 49.8
MV-CNN [49] 86.4 -
P3D ResNet [27] 88.6 -
Attentional Pooling [10] - 52.2
CoViAR 90.4 59.1

With optical flow
iDT+FV [42] - 57.2
Two-Stream [33] 88.0 59.4
Two-Stream fusion [9] 92.5 65.4
LRCN [6] 82.7
Composite LSTM Model [35] 84.3 44.0
ActionVLAD [11] 92.7 66.9
ST-ResNet [7] 93.4 66.4
ST-Mult [8] 94.2 68.9
I3D [2]* 93.4 66.4
TLE [5]† 93.8 68.8
L2STM [37] 93.6 66.2
ShuttleNet [30] 94.4 66.6
STPN [45] 94.6 68.9
TSN [44] 94.2 69.4
CoViAR + optical flow 94.9 70.2

Table 6: Accuracy on UCF-101 [34] and HMDB-51 [18].
The upper lists real-time methods that do not require optical
flow; the lower part lists methods using optical flow. Our
method outperforms all baselines in both settings. Asterisk
indicates results evaluated only on split 1 of the datasets
(purely for reference).

Two-stream Network. Most state-of-the-art models
use the two-stream framework, i.e. one stream trained on
RGB frames and the other on optical flows. It is natural to
ask: What if we replace the RGB stream by our compressed
stream? Here we train a temporal-stream network using 7
segments with BN-Inception [14], and combine it with our
model by late fusion. Despite its simplicity, this achieves
very good performance as shown in Table 5.

The lower part of Table 6 compares our method with
state-of-the-art models using optical flow. CoViAR out-
performs all of them. LRCN [6], Composite LSTM
Model [35], and L2STM [37] use RNNs to model tempo-
ral dynamics. ActionVLAD [11] and TLE [5] apply more
complicated feature aggregation. iDT+FT [42] is based

cedure described in the original paper. We reached out to the authors, but
they were unable to share their implementation.

mAP (%) wAP (%)

Without optical flow
ActionVLAD [11] (RGB only) 17.6 25.1
Sigurdsson et al. [31] (RGB only) 18.3 -
CoViAR 21.9 29.4

With optical flow
Two-stream [33] (from [32]) 14.3 -
Two-stream [33] + iDT [42] (from [32]) 18.6 -
ActionVLAD [11] (RGB only) + iDT 21.0 29.9
Sigurdsson et al. [31] 22.4 -
CoViAR + optical flow 24.1 32.3

Table 7: Accuracy on Charades [32]. Without using ad-
ditional annotations as Sigurdsson et al. [31], our method
achieves the best performance.

on hand-engineered features. Again, our method simply
trains 2D CNNs separately without any complicated fusion
or RNN and still outperforms these models.

Finally we evaluate our method on the Charades dataset
(Table 7). As Charades consists of annotations at frame-
level, we train our network to predict the labels of each
frame. At test time we average the scores of the sampled
frames as the final prediction. Our method again outper-
forms other models trained on RGB images. Note that
Sigurdsson et al. use additional annotations including ob-
jects, scenes, and intentions to train a conditional random
field (CRF) model [31]. Our model requires only action
labels. When using optical flow, CoViAR outperforms all
other state-of-the-art methods. The effectiveness on Cha-
rades demonstrates the effectiveness of CoViAR for both
video-level and frame-level predictions.

5. Conclusion

In this paper, we propose to train deep networks directly
on compressed videos. This is motivated by the practical
observation that either video compression is essentially free
on all modern cameras, due to hardware-accelerated video
codecs or that the video is directly available in its com-
pressed form. In other words, decompressing the video is
actually an inconvenience.

We demonstrate that, quite surprisingly, this is not a
drawback but rather a virtue. In particular, video compres-
sion reduces irrelevant information from the data, thus ren-
dering it more robust. After all, compression is not meant
to affect the content that humans consider pertinent. Sec-
ondly, the increased relevance and reduced dimensionality
makes computation much more effective (we are able to use
much simpler networks for motion vectors and residuals).
Finally, the accuracy of the model actually improves when
using compressed data, yielding new state of the art.

In short, our method is both faster and more accurate,
while being simpler to implement than previous works.
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Figure 7: Two videos of “Jumping Jack” from UCF-101 in their RGB, motion vector, and residual representations plotted in
t-SNE [22] space. The curves show video trajectories. While in the RGB space the two videos are clearly separated, in the
motion vector and residual space they overlap. This suggests that with compressed signals, videos of the same action can
share statistical strength better. Also note that the RGB images contain no motion information, and thus the two ways of the
trajectories overlap. This is in contrast to the circular patterns in the trajectories of motion vectors. Best viewed on screen.
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[38] B. U. Töreyin, A. E. Cetin, A. Aksay, and M. B. Akhan.
Moving object detection in wavelet compressed video. Sig-
nal Processing: Image Communication, 2005. 3

[39] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.
Learning spatiotemporal features with 3d convolutional net-
works. In ICCV, 2015. 2, 6, 7



[40] D. Tran, J. Ray, Z. Shou, S.-F. Chang, and M. Paluri. Con-
vnet architecture search for spatiotemporal feature learning.
arXiv preprint arXiv:1708.05038, 2017. 1, 2, 6, 7
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