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Philipp Krähenbühl[0000−0002−9846−4369]

The University of Texas at Austin
{cywu, nayans, philkr}@cs.utexas.edu

Abstract. An ever increasing amount of our digital communication, me-
dia consumption, and content creation revolves around videos. We share,
watch, and archive many aspects of our lives through them, all of which
are powered by strong video compression. Traditional video compression
is laboriously hand designed and hand optimized. This paper presents
an alternative in an end-to-end deep learning codec. Our codec builds
on one simple idea: Video compression is repeated image interpolation.
It thus benefits from recent advances in deep image interpolation and
generation. Our deep video codec outperforms today’s prevailing codecs,
such as H.261, MPEG-4 Part 2, and performs on par with H.264.

1 Introduction

Video commands the lion’s share of internet data, and today makes up three-
fourths of all internet traffic [17]. We capture moments, share memories, and
entertain one another through moving pictures, all of which are powered by ever
powerful digital camera and video compression. Strong compression significantly
reduces internet traffic, saves storage space, and increases throughput. It drives
applications like cloud gaming, real-time high-quality video streaming [20], or
3D and 360-videos. Video compression even helps better understand and parse
videos using deep neural networks [31]. Despite these obvious benefits, video com-
pression algorithms are still largely hand designed. The most competitive video
codecs today rely on a sophisticated interplay between block motion estimation,
residual color patterns, and their encoding using discrete cosine transform and
entropy coding [23]. While each part is carefully designed to compress the video
as much as possible, the overall system is not jointly optimized, and has largely
been untouched by end-to-end deep learning.

This paper presents, to the best of our knowledge, the first end-to-end trained
deep video codec. The main insight of our codec is a different view on video com-
pression: We frame video compression as repeated image interpolation, and draw
on recent advances in deep image generation and interpolation. We first encode
a series of anchor frames (key frames), using standard deep image compres-
sion. Our codec then reconstructs all remaining frames by interpolating between
neighboring anchor frames. However, this image interpolation is not unique. We
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MPEG-4 Part 2 H.264 Ours
(MS-SSIM = 0.946) (MS-SSIM = 0.980) (MS-SSIM = 0.984)

Fig. 1: Comparison of our end-to-end deep video compression algorithm to
MPEG-4 Part 2 and H.264 on the Blender Tears of Steel movie. All meth-
ods use 0.080 BPP. Our model offers a visual quality better than MPEG-4 Part
2 and comparable to H.264. Unlike traditional methods, our method is free of
block artifacts. The MS-SSIM [28] measures the image quality of the video clip
compared to the raw uncompressed ground truth. (Best viewed on screen.)

additionally provide a small and compressible code to the interpolation network
to disambiguate different interpolations, and encode the original video frame as
faithfully as possible. The main technical challenge is the design of a compressible
image interpolation network.

We present a series of increasingly powerful and compressible encoder-decoder
architectures for image interpolation. We start by using a vanilla U-net inter-
polation architecture [22] for reconstructing frames other than the key frames.
This architecture makes good use of repeating static patterns through time, but
it struggles to properly disambiguate the trajectories for moving patterns. We
then directly incorporate an offline motion estimate from either block-motion
estimation or optical flow into the network. The new architecture interpolates
spatial U-net features using the pre-computed motion estimate, and improves
compression rates by an order of magnitude over deep image compression. This
model captures most, but not all of the information we need to reconstruct a
frame. We additionally train an encoder that extracts the content not present in
either of the source images, and represents it compactly. Finally, we reduce any
remaining spatial redundancy, and compress them using a 3D PixelCNN [19]
with adaptive arithmetic coding [30].

To further reduce bitrate, our video codec applies image interpolation in a
hierarchical manner. Each consecutive level in the hierarchy interpolates between
ever closer reference frames, and is hence more compressible. Each level in the
hierarchy uses all previously decompressed images.

We compare our video compression algorithm to state-of-the-art video com-
pression (HEVC, H.264, MPEG-4 Part 2, H.261), and various image interpola-
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tion baselines. We evaluate all algorithms on two standard datasets of uncom-
pressed video: Video Trace Library (VTL) [2] and Ultra Video Group (UVG) [1].
We additionally collect a subset of the Kinetics dataset [7] for both training and
testing. The Kinetics subset contains high resolution videos, which we down-
sample to remove compression artifacts introduced by prior codecs on YouTube.
The final dataset contains 2.8M frames. Our deep video codec outperforms all
deep learning baselines, MPEG-4 Part 2, and H.261 in both compression rate
and visual quality measured by MS-SSIM [28] and PSNR. We are on par with
the state-of-the-art H.264 codec. Figure 1 shows a visual comparison. All the
data is publicly available, and we will publish our code upon acceptance.

2 Related Work

Video compression algorithms must specify an encoder for compressing the video,
and a decoder for reconstructing the original video. The encoder and the decoder
together constitute a codec. A codec has one primary goal: Encode a series
of images in the fewest number of bits possible. Most compression algorithms
find a delicate trade-off between compression rate and reconstruction error. The
simplest codecs, such as motion JPEG or GIF, encode each frame independently,
and heavily rely on image compression.

Image compression. For images, deep networks yield state-of-the-art compres-
sion ratios with impressive reconstruction quality [6,11,21,24,25]. Most of them
train an autoencoder with a small binary bottleneck layer to directly minimize
distortion [11, 21, 25]. A popular variant progressively encodes the image using
a recurrent neural network [5,11,25]. This allows for variable compression rates
with a single model. We extend this idea to variable rate video compression.

Deep image compression algorithms use fully convolutional networks to han-
dle arbitrary image sizes. However, the bottleneck in fully convolutional networks
still contains spatially redundant activations. Entropy coding further compresses
this redundant information [6, 16, 21, 24, 25]. We follow Mentzer et al. [16] and
use adaptive arithmetic coding on probability estimates of a Pixel-CNN [19].

Learning the binary representation is inherently non-differentiable, which
complicates gradient based learning. Toderici et al. [25] use stochastic binariza-
tion and backpropagate the derivative of the expectation. Agustsson et al. [4] use
soft assignment to approximate quantization. Balle et al. [6] replace the quanti-
zation by adding uniform noise. All of these methods work similarly and allow
for gradients to flow through the discretization. In this paper, we use stochastic
binarization [25].

Combining this bag of techniques, deep image compression algorithms of-
fer a better compression rate than hand-designed algorithms, such as JPEG or
WebP [3], at the same level of image quality [21]. Deep image compression al-
gorithms heavily exploit the spatial structure of an image. However, they miss
out on a crucial signal in videos: time. Videos are temporally highly redundant.
No deep image compression can compete with state-of-the-art (shallow) video
compression, which exploits this redundancy.
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Video compression. Hand-designed video compression algorithms, such as H.263,
H.264 or HEVC (H.265) [13] build on two simple ideas: They decompose each
frame into blocks of pixels, known as macroblocks, and they divide frames into
image (I) frames and referencing (P or B) frames. I-frames directly compress
video frames using image compression. Most of the savings in video codecs come
from referencing frames. P-frames borrow color values from preceding frames.
They store a motion estimate and a highly compressible difference image for
each macroblock. B-frames additionally allow bidirectional referencing, as long
as there are no circular references. Both H.264 and HEVC encode a video in a
hierarchical way. I-frames form the top of the hierarchy. In each consecutive level,
P- or B-frames reference decoded frames at higher levels. The main disadvantages
of traditional video compression is the intensive engineering efforts required and
the difficulties in joint optimization. In this work, we build a hierarchical video
codec using deep neural networks. We train it end-to-end without any hand-
engineered heuristics or filters. Our key insight is that referencing (P or B)
frames are a special case of image interpolation.

Learning-based video compression is largely unexplored, in part due to dif-
ficulties in modeling temporal redundancy. Tsai et al. propose a deep post-
processing filter encoding errors of H.264 in domain specific videos [26]. However,
it is unclear if and how the filter generalizes in an open domain. To the best of
our knowledge, this paper proposes the first general deep network for video com-
pression.

Image interpolation and extrapolation. Image interpolation seeks to hallucinate
an unseen frame between two reference frames. Most image interpolation net-
works build on an encoder-decoder network architecture to move pixels through
time [9,10,14,18]. Jia et al. [9] and Niklaus et al. [18] estimate a spatially-varying
convolution kernel. Liu et al. [14] produce a flow field. All three methods then
combine two predictions, forward and backward in time, to form the final output.

Image extrapolation is more ambitious and predicts a future video from a few
frames [15], or a still image [27,32]. Both image interpolation and extrapolation
works well for small timesteps, e.g. for creating slow-motion video [10] or predict-
ing a fraction of a second into the future. However, current methods struggle for
larger timesteps, where the interpolation or extrapolation is no longer unique,
and additional side information is required. In this work, we extend image inter-
polation and incorporate few compressible bits of side information to reconstruct
the original video.

3 Preliminary

Let I(t) ∈ R
W×H×3 denote a series of frames for t ∈ {0, 1, . . .}. Our goal is

to compress each frame I(t) into a binary code b(t) ∈ {0, 1}
Nt . An encoder E :

{I(0), I(1), . . .} → {b(0), b(1), . . .} and decoderD : {b(0), b(1), . . .} → {Î(0), Î(1), . . .}
compress and decompress the video respectively. E and D have two competing
aims: Minimize the total bitrate

∑
t Nt, and reconstruct the original video as

faithfully as possible, measured by ℓ(Î , I) = ‖Î − I‖1.
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Image compression. The simplest encoders and decoders process each image
independently: EI : I(t) → b(t), DI : b(t) → Î(t). Here, we build on the model
of Toderici et al. [25], which encodes and reconstructs an image progressively
over K iterations. At each iteration, the model encodes a residual rk between
the previously coded image and the original frame:

r0 := I

bk := EI (rk−1, gk−1) , rk := rk−1 −DI (bk, hk−1) , for k = 1, 2, . . .

where gk and hk are latent Conv-LSTM states that are updated at each iteration.
All iterations share the same network architecture and parameters forming a
recurrent structure. The training objective minimizes the distortion at all the
steps

∑K
k=1 ‖rk‖1. The reconstruction ÎK =

∑K
k=1 DI(bk) allows for a variable

bitrate encoding depending on the choice of K.
Both the encoder and the decoder consist of 4 Conv-LSTMs with stride 2. The

bottleneck consists of a binary feature map with L channels and 16 times smaller
spatial resolution in both width and height. Toderici et al. use a stochastic
binarization to allow a gradient signal through the bottleneck. Mathematically,
this reduces to REINFORCE [29] on sigmoidal activations. At inference time,
the most likely state is selected.

This architecture yields state-of-the-art image compression performance. How-
ever, it fails to exploit any temporal redundancy.

Video compression. Modern video codecs process I-frames using an image en-
coder EI and decoder DI . P-frames store a block motion estimate T ∈ R

W×H×2,
similar to an optical flow field, and a residual image R, capturing the appearance
changes not explained by motion. Both motion estimate and residual are jointly
compressed using entropy coding. The original color frame is then recovered by

I
(t)
i = I

(t−1)

i−T
(t)
i

+R
(t)
i , (1)

for every pixel i in the image. The compression is uniquely defined by a block
structure and motion estimate T . The residual is simply the difference between
the motion interpolated image and the original.

In this paper, we propose a more general view on video compression through
image interpolation. We augment image interpolation network with motion in-
formation and add a compressible bottleneck layer.

4 Video Compression through Interpolation

Our codec first encodes I-frames using the compression algorithm of Toderici et al.,
see Figure 2a. We chose every n-th frame as an I-frame. The remaining n − 1
frames are interpolated. We call those frames R-frames, as they reference other
frames. We choose n = 12 in practice, but also experimented with larger groups
of pictures. We will first discuss our basic interpolation network, and then show
a hierarchical interpolation setup, that further reduces the bitrate.
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Fig. 2: Our model is composed of an image compression model that compresses
the key frames, and a conditional interpolation model that interpolates the re-
maining frames. Blue arrows represent motion compensated context features.
Gray arrows represent input and output of the network.

4.1 Interpolation network

In the simplest version of our codec, all R-frames use a blind interpolation net-
work to interpolate between two key-frames I1 and I2. Specifically, we train a
context network C : I → {f (1), f (2), . . .} to extract a series of feature maps f (l) of
various spatial resolutions. For notational simplicity let f := {f (1), f (2), . . .} be
the collection of all context features. In our implementation, we use the upcon-
volutional feature maps of a U-net architecture with increasing spatial resolution
W
8 × H

8 ,
W
4 × H

4 ,
W
2 × H

2 , W ×H, in addition to the original image.
We extract context features f1 and f2 for key-frames I1 and I2 respectively,

and train a network D to interpolate the frame Î := D (f1, f2). C and D are
trained jointly. This simple model favors a high compression rate over image
quality, as none of the R-frames capture any information not present in the I-
frames. Without further information, it is impossible to faithfully reconstruct a
frame. What can we provide to the network to make interpolation easier?

Motion compensated interpolation. A great candidate is ground truth motion. It
defines where pixels move through time and greatly disambiguates interpolation.
We tried both optical flow [8] and block motion estimation [20]. Block motion
estimates are easier to compress, but optical flow retains finer details.

We use the motion information to warp each context feature map

f̃
(l)
i = f

(l)
i−Ti

, (2)

at every spatial location i. We scale the motion estimation with the resolution
of the feature map, and use bilinear interpolation for fractional locations. The
decoder now uses the warped context features f̃ instead, which allows it to focus
solely on image creation, and ignore motion estimation.

Motion compensation greatly improves the interpolation network, as we will
show in Section 5. However, it still only produces content seen in either refer-
ence image. Variations beyond motion, such as change in lighting, deformation,
occlusion, etc. are not captured by this model.
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Our goal is to encode the remaining information in a highly compact from.

Residual motion compensated interpolation. Our final interpolation model com-
bines motion compensated interpolation with a compressed residual information,
capturing both the motion and appearance difference in the interpolated frames.
Figure 2b show an overview of the model.

We jointly train an encoder ER, context model C and interpolation net-
work DR. The encoder sees the same information as the interpolation network,
which allows it to compress just the missing information, and avoid a redun-
dant encoding. Formally, we follow the progressive compression framework of
Toderici et al. [25], and train a variable bitrate encoder and decoder conditioned
on the warped context f̃ :

r0 := I

bk := ER(rk−1, f̃1, f̃2, gk−1), rk := rk−1 −DR(bk, f̃1, f̃2, hk−1), for k = 1, 2, . . .

This framework allows for learning a variable rate compression at high re-
construction quality. The interpolation network generally requires fewer bits to
encode temporally close images and more bits for images that are farther apart.
In one extreme, when key frames do not provide any meaningful signal to the
interpolated frame, our algorithm reduces to image compression. In the other
extreme, when the image content does not change, our method reduces to a
vanilla interpolation, and requires close to zero bits.

In the next section, we use this to our advantage, and design a hierarchical
interpolation scheme, maximizing the number of temporally close interpolations.

4.2 Hierarchical interpolation

The basic idea of hierarchical interpolation is simple: We interpolate some frames
first, and use them as key-frames for the next level of interpolations. See Figure 3
for example. Each interpolation model Ma,b references a frames into the past
and b frames into the future. There are a few things we need to trade off. First,
every level in our hierarchical interpolation compounds error. The shallower the
hierarchy, the fewer errors compound. In practice, the error propagation for more

DI DR DIDR DR

Fig. 3: We apply interpolation hierarchically. Each level in hierarchy uses previ-
ously decompressed images. Arrows represent motion compensated interpolation.
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than three levels in the hierarchy significantly reduces the performance of our
codec. Second, we need to train a different interpolation network Ma,b for each
temporal offset (a, b), as different interpolations behave differently. To maximally
use each trained model, we repeat the same temporal offsets as often as possible.
Third, we need to minimize the sum of temporal offsets used in interpolation.
The compression rate directly relates to the temporal offset, hence minimizing
the temporal offset reduces the bitrate.

Considering just the bitrate and the number of interpolation networks, the
optimal hierarchy is a binary tree cutting the interpolation range in two at
each level. However, this cannot interpolate more than n = 23 = 8 consecutive
frames, without significant error propagation. We extend this binary structure
to n = 12 frames, by interpolating at a spacing of three frames in the last level of
the hierarchy. For a sequence of four frames I1, . . . , I4, we train an interpolation
model M1,2 that predicts frame I2, given I1 and I4. We use the exact same
model M1,2 to predict I3, but flip the conditioned images I4 and I1. This yields
an equivalent model M2,1 predicting the third instead of the second image in the
series. Combining this with an interpolation modelM3,3 andM6,6 in a hierarchy,
we extend the interpolation range from n = 8 frames to n = 12 frames while
keeping the same number of models and levels. We tried applying the same trick
to all levels in the hierarchy, extending the interpolation to n = 27 frames, but
performance dropped, as we had more distant interpolations.

To apply this to a full video of N frames, we divide them into ⌈N/n⌉ groups
of pictures (GOPs). Two consecutive groups share the same boundary I-frame.
We apply our hierarchical interpolation to each group independently.

Bitrate optimization. Each interpolation model at a level l of the hierarchy, can
choose to spend Kl bits to encode an image. Our goal is to minimize the overall
bitrate, while maintaining a low distortion for all encoded frames. The challenge
here is that each selection of Kl affects all lower levels, as errors propagate. Se-
lecting a globally optimal set of {Kl} thus requires iterating through all possible
combinations, which is infeasible in practice.

We instead propose a heuristic bitrate selection based on beam search. For
each level we chose from m different bitrates. We start by enumerating all m
possibilities for the I-frame model. Next, we expand the first interpolation model
with all m possible bitrates, leading to m2 combinations. Out of these combina-
tions, not all lead to a good MS-SSIM per bitrate, and we discard combinations
not on the envelope of the MS-SSIM vs bitrate curve. In practice, only O(m)
combinations remain. We repeat this procedure for all levels of the hierarchy.
This reduces the search space from mL to O(Lm2) for an L-level hierarchy. In
practice, this yields sufficiently good bitrates.

4.3 Implementation

Architecture. Our encoder and decoder (interpolation network) architecture fol-
lows the image compression model in Toderici et al. [25]. While Toderici et al.
use L = 32 latent bits to compress an image, we found that for interpolation,
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L = 8 bits suffice for distance 3 and L = 16 for distance 6 and 12. This yields
a bitrate of 0.0625 bits per pixel (BPP) and 0.03125 BPP for each iteration
respectively.

We use the original U-net [22] as the context model. To speed-up training
and save memory, we reduce the number of channels of all filters by half. We did
not observe any significant performance degradation.

To make it compatible with our architecture, we remove the final output
layer and takes the feature maps at the resolutions that are 2×, 4×, 8× smaller
than the original input image.

Conditional encoder and decoder. To add the information of the context frames
into the encoder and decoder, we fuse the U-net features with the individual
Conv-LSTM layers. Specifically, we perform the fusion before each Conv-LSTM
layer by concatenating the corresponding U-net features of the same spatial
resolution. To increase the computational efficiency, we selectively turn some
of the conditioning off in both encoder and decoder. This was tuned for each
interpolation network; see supplementary material for details.

To help the model compare context frames and the target frame side-by-side,
we additionally stack the two context frames with target frame, resulting in a
9-channel image, and use that instead as the encoder input.

Entropy coding. Since the model is fully-convolutional, it uses the same number
of bits for all locations of an image. This disregards the fact that information is
not distributed uniformly in an image. Following Mentzer et al. [16], we train a

3D Pixel-CNN on the {0, 1}
W/16×H/16×L

binary codes to obtain the probability
of each bit sequentially. We then use this probability with adaptive arithmetic
coding to encode the feature map. See supplementary material for more details.

Motion compression. We store forward and backward block motion estimates as
a lossless 4-channel WebP [3] image. For optical flow we train a separate lossy
deep compression model, as lossless WebP was unable to compress the flow field.

5 Experiments

In this section, we perform a detailed analysis on the series of interpolation
models (Section 5.1), and present both quantitative and qualitative (Section 5.2)
evaluation of our approach.

Datasets and Protocol. We train our models using videos from the Kinetics
dataset [7]. We only use videos with a width and height greater than 720px. To
remove artifacts induced by previous compression, we downsample those high
resolution videos to 352 × 288px. We allow the aspect ratio to change. The
resulting dataset contains 37K videos. We train on 27K, use 5K for validation,
and 5K for testing. For training, we sample 100 frames per video. For faster
testing on Kinetics, we only use a single group of n = 12 pictures per video.
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Fig. 4: MS-SSIM of different models evaluated on the VTL dataset.

We additionally test our method on two raw video datasets, Video Trace
Library (VTL) [2] and Ultra Video Group (UVG) [1]. The VTL dataset contains
∼ 40K frames of resolution 352 × 288 in 20 videos. The UVG dataset contains
3, 900 frames of resolution 1920× 1080 in 7 videos.

We evaluate our method based on the compression rate in bits per pixel
(BPP), and the reconstruction quality in multi-scale structural similarity (MS-
SSIM) [28] and peak signal-to-noise ratio (PSNR). We report the average per-
formance of all videos, as opposed to the average of all frames, as our final
performance. We use a GOP size of n = 12 frames, for all algorithms unless
otherwise stated.

Training Details. All of our models are trained from scratch for 200K iterations
using ADAM [12], with gradient norms clipped at 0.5. We use a batch size of 32
and a learning rate of 0.0005, which is divided by 2 when the validation MS-SSIM
plateaus. We augment the data through horizontal flipping. For image models
we train on 96× 96 random crops, and for the interpolation models we train on
64× 64 random crops. We train all models with 10 reconstruction iterations.

5.1 Ablation study

We first evaluate the series of image interpolation models in Section 4 on the
VTL dataset. Figure 4a shows the results.

We can see that image compression model requires by far the highest BPP
to achieve high visual quality and performs poorly in the low bitrate region.
This is not surprising as it does not exploit any temporal redundancy and needs
to encode everything from scratch. Vanilla interpolation does not work much
better. We present results for interpolation from 1 to 4 frames, using the best
image compression model. While it exploits the temporal redundancy, it fails to
accurately reconstruct the image.
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Motion-compensated interpolation works significantly better. The additional
motion information disambiguates the interpolation, improving the accuracy.
The presented BPP includes the size of motion vectors.

Our final model efficiently encodes residual information and makes good use
of hierarchical referencing. It achieves the best performance when combined with
entropy coding. Note the large performance gap between our method and the im-
age compression model in the low bitrate regime – our model effectively exploits
context and achieves a good performance with very few bits per pixel.

As a sanity check, we further implemented a simple deep codec that uses
image compression to encode the residual R in traditional codecs. This simple
baseline stores the video as the encoded residuals, compressed motion vectors, in
addition to key frames compressed by a separate deep image compression model.
The residual model struggles to learn patterns from noisy residual images, and
works worse than an image-only compression model. This suggests that trivially
extending deep image compression to videos is not sufficient. Our end-to-end
interpolation network performs considerably better.

Motion. Next, we analyze different motion estimation models, and compare
optical flow to block motion vectors. For optical flow, we use the OpenCV im-
plementation of the Farnebäck’s algorithm [8]. For motion compensation, we use
the same algorithm as H.264.

Figure 4b shows the results of the M6,6 model with both motion sources.
Using motion information clearly helps improve the performance of the model,
despite the overhead of motion compression. Block motion estimation (MV)
works significantly better than the optical flow based model (flow). Almost all
of this performance gain comes from better compressible motion information.
The block motion estimates are smaller, easier to compress, and fit in a lossless
compression scheme.

To understand whether the worse performance of optical flow is due to the
errors in flow compression or the property of the flow itself, we further measure
the hypothetical performance upper bound of an optical flow based model as-
suming a lossless flow compression at no additional cost (flow⋆). As shown in
Figure 4b, this upper bound performs better than motion vectors, leaving room
for improvement through compressible optical flow estimation. However, finding
such a compressible flow estimate is beyond the scope of this paper. In the rest
of this section, we use block motion estimates in all our experiments.

Individual interpolation models and entropy coding. Figure 4c shows the perfor-
mance of different interpolation models with and without entropy coding. For
all models, entropy coding saves up to 52% BPP, at a low bitrate, and at least
10%, at a high bitrate. More interestingly, the short time-frame interpolation is
almost free, achieving the same visual quality as an image-based model at one or
two orders of magnitude lower BPP. This shows that most of our bitrate saving
comes from the interpolation models at lower levels in the hierarchy.
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5.2 Comparison to prior work

We now quantitatively evaluate our method on all three datasets and compare
our method with today’s prevailing codecs, HEVC (H.265), H.264, MPEG-4
Part 2, and H.261. For consistent comparison, we use the same GOP size, 12, for
H.264 and HEVC. We test H.261 on only VTL and Kinetics-5K, since it does
not support high-resolution (1920× 1080) videos of the UVG dataset.

Figures 5-7 present the results. Despite its simplicity, our model greatly out-
performs MPEG-4 Part 2 and H.261, performs on par with H.264, and close
to state-of-the-art HEVC. In particular, on the high-resolution UVG dataset, it
outperforms H.264 by a good margin and matches HEVC in terms of PSNR.

Our testing datasets are not just large in scale (>100K frames of>5K videos),
they also consist of videos in a wide range of sizes (from 352 × 288 to 1920 ×
1080), time (from 1990s for most VTL videos to 2018 for Kinetics), quality
(from professional UVG to user uploaded Kinetics), and contents (from scenes,
animals, to the 400 human activities in Kinetics). Our model, trained on only
one dataset, works well on all of them.

Finally, we present qualitative results of three of the best performing models,
MPEG-4 Part 2, H.264 and ours in Figure 8. All models here use 0.12 ± 0.01
BPP. We can see that in all datasets, our method shows faithful images without
any blocky artifacts. It greatly outperforms MPEG-4 Part 2 without bells and
whistles, and matches state-of-the-art H.264.

6 Conclusion

This paper presents, to the best of our knowledge, the first end-to-end trained
deep video codec. It relies on repeated deep image interpolation. To disambiguate
the interpolation, we encode a few compressible bits of information representing
information not inferred from the neighboring key frames. This yields a faithful
reconstruction instead of pure hallucination. The network is directly trained to
optimize reconstruction, without prior engineering knowledge.

Our deep codec is simple, and outperforms the prevailing codecs such as
MPEG-4 Part 2 or H.261, matching state-of-the-art H.264. We have not consid-
ered the engineering aspects such as runtime or real-time compression. We think
they are important directions for future research.

In short, video compression powered by deep image interpolation achieves
state-of-the-art performance without sophisticated heuristics or excessive engi-
neering.
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Fig. 5: Performance on the UVG dataset.
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Fig. 8: Comparison of compression results at 0.12 ± 0.01 BPP. Our method
shows faithful images without any blocky artifacts. (Best viewed on screen.)
More examples and demo videos showing temporal coherence are available at
https://chaoyuaw.github.io/vcii/.

https://chaoyuaw.github.io/vcii/
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