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ABSTRACT

Generative Adversarial Networks are one of the leading tools in generative mod-
eling, image editing and content creation. However, they are hard to train as
they require a delicate balancing act between two deep networks fighting a never
ending duel. Some of the most promising adversarial models today minimize a
Wasserstein objective. It is smoother and more stable to optimize. In this paper,
we show that the Wasserstein distance is just one out of a large family of objective
functions that yield these properties. By making the discriminator of a GAN robust
to adversarial attacks we can turn any GAN objective into a smooth and stable loss.
We experimentally show that any GAN objective, including Wasserstein GANs,
benefit from adversarial robustness both quantitatively and qualitatively. The train-
ing additionally becomes more robust to suboptimal choices of hyperparameters,
model architectures, or objective functions.

1 INTRODUCTION

Generative adversarial networks (GANs) (Goodfellow et al., 2014a) are at the forefront of generative
modeling. They cast generative modeling as a never ending duel between two networks: a generator
network produces synthetic samples from random noise and a discriminator network distinguishes
synthetic from real data samples. GANs produce visually appealing samples, but are often hard to
train. Much recent work, tries to stabilize GAN training through novel architecture (Radford et al.,
2015; Denton et al., 2015) or training objectives(Mao et al., 2017; Arjovsky et al., 2017; Gulrajani
et al., 2017).

In this paper, we show that GAN objectives significantly stabilize, if the discriminator is robust to
adversarial attacks. Specifically, we show that a robust discriminator leads to a robust minimax
objective for the generator irrespective of the training objective used. In addition, any training
objective is smooth and Lipschitz as long as the discriminator is Lipschitz. Finally, we show that this
robustness does not need to be enforced for every single input of the discriminator, but rather just in
expectation over the generated samples. We present two new regularization terms, borrowed from the
adversarial training literature. Both terms ensure the robustness of the discriminator. They are easy to
optimize and can be added to any existing GAN objective.

Our experiments show that adversarial robustness both improves the visual quality of the results,
as well as stabilizes the training procedure across a wide range of architectures, hyper-parameters
and training objectives. We will publish the code and data used to perform our experiments upon
acceptance.

2 RELATED WORKS

The scope of generative modeling changed significantly with the emergence of photo realistic image
generation like Generative Adversarial Networks (GANs) (Goodfellow et al., 2014a), Variational Auto-
Encoders (Kingma & Welling, 2013), or Pixel Convolutional Networks (Oord et al., 2016). The visual
quality of these generative models enabled applications such as, generative image processing (Pathak
et al., 2016), image editing (Zhu et al., 2016), and image translation (Isola et al., 2017; Zhu et al.,
2017). They also started the race for ever prettier generated images. Two major areas of improvement
are architectures (Radford et al., 2015; Denton et al., 2015) and loss functions (Mao et al., 2017;
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standard discriminator robust discriminator

Figure 1: Results from four generative adversarial models. The leftmost model is trained with a
standard discriminator, while the models on the right use an increasingly more robust discriminator.
We show that a robust discriminator leads to a smoother and more stable training objective, resulting
in a better generative model. Best viewed on screen.

Arjovsky et al., 2017; Gulrajani et al., 2017). Denton et al. (2015) showed that a Laplacian pyramid
generator greatly improves the quality of the generated images, while Radford et al. (2015) showed
impressive results by carefully balancing the expressive power of the generator and discriminator
networks. In this work, we use Radford et al. (Radford et al., 2015) architecture, and solely focus on
the loss function.

GANs come in three popular loss functions: the original Jensen-Shanon divergence objective (Good-
fellow et al., 2014a), least squares GANs (LSGAN) (Mao et al., 2017), and Wasserstein distance
(WGAN) (Arjovsky et al., 2017). Each objectives minimizes special case of a f-divergence between
the generative and data distribution (Nowozin et al., 2016). Arjovsky et al. (2017) augment the GAN
objective with a smoothness condition in the form of a Lipschitz-1 constraint on the discriminator.
However, enforcing a Lipschitz-1 discriminator is difficult. Arjovsky et al. (2017) clip the weights of
the discriminator to enforce the Lipschitz condition, while Gulrajani et al. (2017) apply a penalty on
the gradient of the discriminator. The gradient penalty (WGAN-GP) generally yields better results,
however it looses some of the appealing theoretical properties of WGANs. Arjovsky et al.show that
in theory most GAN objective are non-continuous and non-Lipschitz, while the Wasserstein objective
is Lipschitz, smooth, and more stable to optimize. In this paper, we extend their analysis and show
that any GAN objective can be made smooth as long as the discriminator is robust to adversarial per-
turbations. In addition, the discriminator only needs to be robust to adversarial attacks in expectation
over all generated samples. A simple penalty function is sufficient to carry the theoretical smoothness
results of WGAN other GAN objectives.

Our theoretical analysis is related to Bottou et al. (2017), who study the geometry to common distance
measures for generative modeling. We build on their analysis and show that any GAN objective is
Lipschitz and smooth, as long as the generator and discriminator are Lipschitz.

Adversarial Examples Despite success of deep networks, their differentiable nature makes them
vulnerabilities to adversarial attacks. Small perturbation of the input can significantly change the
output of a network (Szegedy et al., 2013). The initial work of Szegedy et al. (2013) set off an arms
race between novel attack methods (Goodfellow et al., 2014b; Carlini & Wagner, 2017; Papernot
et al., 2016a; Moosavi Dezfooli et al., 2016) and defenses (Kannan et al., 2018; Papernot et al.,
2016b) against these attacks. The goal of an attacker is to find an perturbation in an attack region that
yields a large change in output. Some of the fastest attacks simply perturb the input in the gradient
direction of the network (Goodfellow et al., 2014b), while more complex attacks optimize for an
attack vector (Carlini & Wagner, 2017). Many attacks can be directly used in a defense through
dataset augmentation (Papernot et al., 2016b). In this work, we primarily use the fast gradient methods
of Goodfellow et al. (2014b), in particular we use the normalized gradient attack.
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3 PRELIMINARIES

Let z ∼ PZ be a sample from a noise distribution PZ , e.g. uniform noise. Let x ∼ PR be a sample
form a data distribution PR. The goal of sampling based generative modeling is to find a function
G(z) that maps samples from PZ to PR. More specifically, we want PY = {y = G(z)|z ∼ PZ} to
closely resemble PR.

Generative Adversarial Networks A generative adversarial network (GAN) optimizes a two
player game between a generative model G and a discriminator D. The generator G maps noise to
data samples. A discriminator D then judges if the transformed noise is close enough to the true data
distribution PR. A GAN jointly optimizes both generator and discriminator in a minimax game. The
GAN objective L minimizes a generator G and maximizes a discriminator D over

L(G,D) = Ex∼PR
[f(−D(x))] + Ez∼PZ

[f(D(G(z)))], (1)

where f is differentiable, usually concave, loss function. The generator minimizes

`(G) = max
D∈D

L(G,D). (2)

In practice, both generator G(z; θ) and discriminator D(x;φ) are deep neural networks with parame-
ters θ and φ respectively. The discriminator D produces a single scalar output, which is then passed
through the loss function f . Different choices of f lead to different GAN models. The original GAN
objective uses a sigmoid log likelihood loss for f(x) = − log(1 + exp(−x)), and corresponds to the
Jensen-Shannon divergence between data and generator (Goodfellow et al., 2014a). A Euclidean
loss f(x) = − 1

2 (1 + x)2 leads to least squares GAN (LSGAN) (Mao et al., 2017). A Lipschitz-1
discriminator D and identity loss functions f(x) = x corresponds to the Wasserstein distance in
WGAN (Arjovsky et al., 2017). In all these examples f is concave, and for GAN and LSGAN
non-positive.

Adversarial attacks We follow the standard adversarial attack definition in literature (Carlini &
Wagner, 2017; Kannan et al., 2018).
Definition 3.1 (robustness). A function h(x) is robust to adversarial perturbations ∆ for an input x
if and only if

|h(x)− h(x+ ∆)| < ε for all ‖∆‖p < δ,

where the p-norm ‖ · ‖p defines the local attack region.

For simplicity of the analysis, we focus on distance norms | · | instead of general distance functions
of Carlini & Wagner (2017). Our definition includes logit pairing of Kannan et al. (2018).

Definition 3.1 focuses on individual inputs x drawn from an empirical data distribution of training or
testing images. We extend this definition to generative distributions G(z).
Definition 3.2 (expected robustness). A function h, e.g. a discriminator, is robust to adversarial
perturbations for a generative distribution G(z) if and only if

Ez∼PZ
[|h(G(z))− h(G(z) + u(z))|] < ε for all functions u with‖u(z)‖p < δ,

where the p-norm ‖ · ‖p defines the local attack region, and d measures the distance between the
network outputs.

This definition only requires robustness in expectation, but not for every single sample z ∼ PZ . A
discriminator D is robust if it satisfies definition 3.2 for h = D. A discriminator loss f is robust for
h = f ◦D. For notational simplicity, we define the additive combination of a generator G and a
perturbation function u as G+ u where (G+ u)(z) = G(z) + u(z).

4 ROBUST GENERATIVE ADVERSARIAL NETWORKS

In this section, we show that the GAN objective is robust to adversarial perturbations, as long as the
discriminator is robust. This property even holds as the discriminator adapts with the perturbation
applied. We first analyze the case when the loss of the discriminator is robust to an adversarial attack,
and then study the robustness of the discriminator directly.
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Theorem 4.1 (robust loss). If the loss of a discriminator D is robust to adversarial perturbations
‖u(z)‖p < δ in expectation

Ez∼PZ
[|f(D(G(z)))− f(D(G(z) + u(z)))|] < ε

then the adversarial objective ` is robust

|`(G)− `(G+ u)| < ε

Proof. Let DG be the optimal discriminator for generator G. For this discriminator we have

L(G,DG) = max
D

L(G,D) ≥ L(G,DG+u), (3)

by definition. This allows us to bound the difference in the objective for a generator G and its
perturbation G+ u:

`(G)− `(G+ u) ≤ L(G,DG)− L(G+ u,DG) Inequality 3
= Ez∼µz [f(DG(G(z)))− f(DG(G(z) + u(z)))] < ε linearity of expectation

We can equivalently bound `(G+ u)− `(G) < ε, and obtain |`(G)− `(G+ u)| < ε.

The above proof uses the (global) optimality of the discriminator in Equation (3). However, the bound
holds for any discriminator that improves the objective, without reaching a local or global minima,
and could thus be generalized.

Next, we focus our attention to robust discriminators. Here, we rely on an additional assumption that
all loss functions f we consider are concave. This is the case for the three most popular architectures:
original GAN, LSGAN and WGAN.
Theorem 4.2 (robust discriminator). For a concave loss f and a discriminator D that is robust to
perturbations ‖u(z)‖p < δ in expectation

Ez∼PZ
[|D(G(z))−D(G(z) + u(z))|] < ε

the adversarial objective ` is robust

|`(G)− `(G+ u)| < εC

where C = Ez∈PZ
[max(|f ′(D(G(z)))| , |f ′(D(G(z) + u(z)))|)] is the expected loss gradient.

Proof. The proof follows directly from the definition of concavity f(a)− f(b) ≤ f ′(a)(a− b) and
the fairly conservative bound |f(a)−f(b)| ≤ max(|f ′(a)|, |f ′(b)|)|a−b|. In expectation, this bound
reduces the robust discriminator to a robust loss

Ez∼PZ
[|f(D(G(z)))− f(D(G(z) + u(z)))|] ≤ Ez∼PZ

[|D(G(z))−D(G(z) + u(z))|]C < εC.

The rest of the proof follows Theorem 4.1.

For the original GAN C < 1, for WGAN C = 1, and for LSGAN C ≤ Ez∈PZ
[|1 +D(G(z))|] + ε,

where |1 +D(G(z))| is directly minimized in the objective and is close to zero.

Theorem 4.1 and Theorem 4.2 have some interesting implications for general GANs. First, any GAN
that is trained with a robust discriminator or loss has a robust and hence smooth objective. This
directly extends the theoretical properties of WGANs (Arjovsky et al., 2017) to other GAN model. It
further relaxes the strict Lipschitz constraints to adversarial robustness in expectation. This is much
easier to enforce in practice as we will show in the next section.

Second, Theorem 4.2 allows us to analyze the continuity and Lipschitzness of any GAN objective. In
particular, we can show any GAN objective is continuous or Lipschitz in its parameters as long as the
discriminator and generator are continuous or Lipschitz. This is in direct contradiction to Arjovsky
et al. (2017), that show only WGAN to be continuous. However, their counter example relies on a
discontinuous discriminator with infinitely large weights. See supplemental material for a detailed
derivation and proof.

Robust discriminators or losses can be hard to train in practice, as they require constrained optimiza-
tion or a carefully tuned architecture. Next, we show how a regularized discriminator objective can
lead to a robust discriminator without the need for any constraints.
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4.1 TRAINING A ROBUST DISCRIMINATOR

Our goal is to train a discriminator D such that it is robust to adversarial perturbations in expectation.
We do this by augmenting the original discriminator training objective with an additional adversarial
regularization

ρ(D,G) = Ez∼PZ

[
max

v:‖v‖p<δ
(D(G(z))−D(G(z) + v))2

]
. (4)

In adversarial defense, this is known as distillation (Papernot et al., 2016b) or logit pairing (Kannan
et al., 2018), where v is the attack vector in an attack region ‖v‖p < δ. For the main evaluation,
we find the attack vector using the fast normalized gradient attack (Goodfellow et al., 2014b):
v = ∇D(G(z))

‖∇D(G(z))‖2 . Additional results using other attack methods are in the supplementary material.

This adversarial regularization is sufficient to ensure a robust discriminator.
Theorem 4.3 (regularized robustness). For a non-positive loss f and a regularized discriminator
objective

maximize
D∈D

L(D,G)− λρ(D,G)

the optimal discriminator D∗ is robust

Ez∼PZ
[|D∗(G(z))−D∗(G(z) + u(z))|] ≤

√
−2f(0)

λ

for all ‖u(z)‖p < δ.

Proof. We know that the objective value of the optimal discriminator is larger than the objective of a
constant zero discriminator:

L(D∗, G)− λρ(D∗, G) ≥ L(0, G)− λρ(0, G) = L(0, G)

λρ(D∗, G) ≤ L(D∗, G)− L(0, G) ≤ −L(0, G) = −2f(0),

where the last inequality holds due to the non-positivity of the objective. Using Jensen’s inequality
we can further reduce

max
u:‖u(z)‖p<δ

Ez∼PZ
[|D∗(G(z))−D∗(G(z) + u(z))|]2 ≤

max
u:‖u(z)‖p<δ

Ez∼PZ

[
|D∗(G(z))−D∗(G(z) + u(z))|2

]
= ρ(D∗, G) ≤ −2f(0)

λ
.

As we increase the weight λ of the robustness term, the bound in Theorem 4.3 tightens and the
discriminator is more robust to adversarial perturbations. A similar bound can be derived for an
absolute instead of squared loss ρ.

While the adversarial regularization ρ yields all the nice theoretical benefits of a robust discriminator,
in practice it often does not provide enough regularization. A much stronger regularization is to
match the features φ(x) of the penultimate layer of the discriminator network D(x) = w>φ(x). We
call this robust feature matching (RFM). Our robust feature matching minimizes

ρr(D,G) = Ez∼Pz

[
max

v:‖v‖p<δ
‖φ(G(z))− φ(G(z) + v)‖22

]
+ α‖w‖22 (5)

where v is the attack direction, w is the weight of the last linear layer, and α ∈ R+ is a hyperparameter.
We use δ = 0.05 and α = 10−4 in all our experiments. Similar to Theorem 4.3, robust feature
matching ensures the robustness of the optimal discriminator

Ez∼PZ
[|D∗(G(z))−D∗(G(z) + u(z))|] ≤ −2f(0)√

αλ
.

For a detailed proof see supplement.

Next, we will give some intuition on how adversarial defense changes the loss landscape of a GAN
on a small toy example.
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Figure 2: Dirac-GAN objective value as a function of the generator parameter θ for linear (WGAN),
least squares (LSGAN) and Jensen-Shanon (GAN) objectives: (a) without constraints, (b) constrains
on the loss function (Thm 4.1), (c) constrains the discriminator output (Thm 4.2), (d) a regularizer on
the discriminator output (Thm 4.3). Adding adversarial robustness to the discriminator smoothes out
any objective. Best viewed in color.

4.2 A TOY EXAMPLE

We verify the above robustness properties on the simple one dimensional Dirac-GAN of Mescheder
(2018). It allows us to separate practical optimization issues from the form and regularity of the loss
function. We can easily optimize the discriminator of Dirac-GAN to convergence with or without
robustness constraints or penalties. In the Dirac-GAN, the true data distribution pD is represented by
a Dirac distribution centered at zero. The generator produces samples from another Dirac distribution
centered at θ, where θ is the only learnable generator parameter. The discriminator is a linear function
D(x) = ψx with a single scalar parameter ψ. This experimental setup is analogous to the two
dimensional toy example of Arjovsky et al. (2017). The GAN objective of Dirac-GAN reduces to
L(G) = maxψ f(ψθ) + f(0). We plot this objective in Figure 2a for unconstrained GAN, LSGAN
and WGAN respectively. Note, that all objectives are zero if the data and generative distributions
match and constant otherwise. Without any regularization, neither one of these objectives will provide
a meaningful gradient signal.

Adding a robust loss Figure 2b, Theorem 4.1, or a robust discriminator Figure 2d, Theorem 4.2, will
smooth out all loss functions and provide a meaningful gradient signal throughout training. Finally,
the regularized loss shows an equally smooth loss curve. This serves as an illustrative example of the
effect of robustness on the overall loss function of a GAN.

5 EXPERIMENTS

We perform all our experiments on the MNIST (LeCun et al., 1998), CIFAR10 (Krizhevsky, 2009)
and CelebA (Liu et al., 2015) datasets. We use a slightly modified DCGAN (Radford et al., 2015)
architecture. All convolutional blocks are replaced with residual blocks (He et al., 2016), the
generator employs batch normalization (Ioffe & Szegedy, 2015) and ReLU nonlinearities, while the
discriminator uses instance normalization (Ulyanov et al., 2016) and Leaky ReLU. We train using a
weight decay term λ = 10−4, with batch size n = 64 and optimize using ADAM (Kingma & Ba,
2014) with h = 2 · 10−4 and β0 = 0, β1 = 0.9 for 50 epochs on CIFAR10 and 25 epochs on CelebA.
We use a latent vector of dimension z = 128 and use a unit Gaussian for our sampling distribution.
For complete training and architecture details see supplement.

Robust GAN training We compare original Jenson-Shannon divergence loss (GAN) (Goodfellow
et al., 2014a), the least squares loss (LSGAN) (Mao et al., 2017), and the Wasserstein distance
(WGAN) (Arjovsky et al., 2017) on CIFAR10 and CelebA. Along with these losses, we add a
regularization method: Instance Noise (IN) (Sønderby et al., 2016), Gradient Penalty (GP) (Gulrajani
et al., 2017), Adversarial Regularization (AR) ρ, and Robust Feature Matching (RFM) ρr. We tuned
the hyper-parameters for each combination of loss functions and robustness terms (or none).

We present quantitative results in terms of Fréchet Inception Distance (FID) (Heusel et al., 2017), as
well as qualitative results. The FID score measures the distance between two Gaussian distributions
that are estimated from the deep feature statistics from the real and generated distributions. Distribu-
tions that are close have a lower FID score, distributions that are large have a higher score. Heusel
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Figure 3: Random image samples from CIFAR10 for various GAN objectives (GAN, LSGAN,
WGAN) and robust regularizations (none, GP, AR, RFM). Best viewed on screen.

et al. (2017) showed that the FID metric corresponds well with human judgment of image quality.
In our experiments, we use FID as the primary quantitative measure of image quality. As we are
mainly interested in the relative improvements of different methods we did not extensively tune the
architecture. See the supplementary for additional details on experimental setup.

Table 1 shows the quantitative results. Without any regularization the original and least squares
objective work best, while the linear (WGAN) objective does not train well. This is not surprising, as
an unconstrained linear objective easily large discriminator outputs and unstable gradients. Adding
instance noise (IN) exacerbates this problem for CIFAR-10, but slightly helps for Celeb-A. The
gradient penalty (GP) fixes some of the instabilities for both CIFAR-10 and Celeb-A, and helps most
for the linear (WGAN) model. However, the gradient penalty does not nearly perform as well as our
robust regularizations (AR and RFM), both of which improve the quality of the synthesized images
throughout different GAN objectives. Figures 3 and 4 show the corresponding qualitative results.
More generated images as well as additional results measuring the effect of different adversarial
attacks can be found in supplementary material.

loss regularization

None IN GP AR RFM

GAN 34.25 32.28 30.22 24.06 24.50
LSGAN 32.03 32.89 29.72 27.42 25.22
WGAN 41.58 49.80 26.20 28.42 24.90

(a) FID on CIFAR10

regularization

None IN GP AR RFM

34.63 14.23 19.61 12.04 12.15
36.27 14.06 21.56 15.60 11.45
53.50 19.41 16.12 14.16 13.40

(b) FID on Celeb-A

Table 1: FID scores on CIFAR10 and FID on Celeb-A for various GAN losses and regularizations.
Lower is better for FID.

Stability across architectures/hyperparameters We follow Gulrajani et al. (2017) and evaluate
the robustness of our regularization across a variety of experimental setups on CIFAR-10. We
randomly sample 55 different experiment setups from a large pool of commonly used losses (JS,
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Figure 4: Random image samples from CelebA for various GAN objectives (GAN, LSGAN, WGAN)
and robust regularizations (none, GP, AR, RFM). Best viewed on screen.

LSGAN, WGAN), batch size (8, 64), learning rate (10−3, 10−4), network blocks (vanilla convo-
lution, ResNet), filter size (32, 128), nonlinearities (ReLU, LeakyReLU, Tanh) and normalizations
(BatchNorm, InstanceNorm, none). For each random setup, we train four separate models: without
regularization, with additive instance noise, with gradient penalty, and with RFM. We rank them from
1 to 4 in order of increasing FID score. We then count how many times a given method performs the
best and worst out of the batch. Table 2 shows the results. Our robust feature matching consistently
outperform other regularization, performing best in over two thirds of the experimental setups.

Experimentally, a robust loss or penalty leads to better convergence, see supplement. However, the
theoretical implications of adversarial robustness on local convergence is not yet well understood and
warrants further investigation.

None Noise GP RFM

# Top Perf. 1 6 11 37
# Worst Perf. 39 9 4 3
Average Rank 3.6 2.7 2.2 1.5

Table 2: Performance under different experimental setups.

6 CONCLUSION

In this paper, we established a clear connection between robust discriminators in generative adversarial
networks and the overall smoothness of the optimization and the quality of the results. To our
knowledge, we are the first to show that a robustness regularization guarantees a smooth and robust
loss function for any GAN objective. Finally, our results suggest that robust regularization leads to
better training and visual results than standard gradient penalties.
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APPENDIX A CONTINUITY AND LIPSCHITZNESS

We start by showing that any GAN with a continuous generator and disciminator has itself a continuous
objective.
Corollary A.1. If generator, discriminator and loss function fF in a GAN are continuous, then the
GAN objective `(G(θ)) is continuous in the generator parameters θ.

Proof. By definition of continuity we have ‖G(z; θ)−G(z; θ + ∆θ)‖ < εG for all ‖∆θ‖ < δθ and
all noise samples z, and |fF (D(x))−fF (D(x+∆x))| < εD for all ‖∆x‖ < δx. Using Theorem 4.1,
we know |`(G(θ)) − `(G(θ) + u)| < εD for any perturbation u(z) = G(z; θ + ∆θ) − G(z; θ) as
long as ‖u(z)‖ < δx. Hence, |`(G(θ))− `(G(θ + ∆θ))| < εD for all ‖∆θ‖ < δθ, if δx = εG.

The same properties hold for Lipschitz functions.
Corollary A.2. In a GAN, if the generator is K-Lipschitz and the discriminator is L-Lipschitz, then
the GAN objective is (KLC)-Lipschitz in the generator parameters θ, where C is the expected slope
of the loss function.

Proof. By definition of Lipschitz continuity any perturbation u(z) = G(z; θ + ∆θ) − G(z; θ) is
bounded ‖u(z)‖ < K‖∆θ‖. Furthermore the composition of Lipschitz functions is bounded by
|D(G(z; θ + ∆θ)) − D(G(z; θ))| < KL‖∆x‖. Combining ∆x = u(z) with Theorem 4.2 yields
|`(G(θ))− `(G(θ + ∆θ))| < KLC‖∆θ‖. Hence the GAN objective is (KLC)-Lipschitz.

APPENDIX B ROBUST FEATURE MATCHING BOUND

Here we show that for a optimal discriminator D∗(x) = w>φ(x) in robust feature matching

ρr(D,G) = Ez∼Pz

[
max

v:‖v‖p<δ
‖φ(G(z))− φ(G(z) + v)‖22

]
+ α‖w‖22 (6)

is robust.
Theorem B.1. For a non-positive loss f and a robust feature matching objective

maximize
D∈D

L(D,G)− λρr(D,G)

the optimal discriminator D∗ is robust

Ex∼PZ
[|D∗(G(z))−D∗(G(z) + u(z))|] ≤ −f(0)√

αλ

for all ‖u(z)‖p < δ.

Proof. We know that the objective value of the optimal discriminator is larger than the objective of a
constant zero discriminator:

L(D∗, G)− λρr(D∗, G) ≥ L(0, G)− λρr(0, G) = L(0, G)

λρr(D
∗, G) ≤ L(D∗, G)− L(0, G) ≤ −L(0, G) = −2f(0),

where the last inequality holds due to the non-positively of the objective. For every element of the
RFM objective

‖φ(G(z))− φ(G(z) + v)‖22 + α‖w‖22 ≥ 2
√
α‖w‖2‖φ(G(z))− φ(G(z) + v)‖2 Square expansion

≥ 2
√
α‖w>φ(G(z))− w>φ(G(z) + v)‖2 Cauchy–Schwarz

= 2
√
α|D(G(z))−D(G(z) + v)|.

Hence

Ex∼PZ
[|D∗(G(z))−D∗(G(z) + u(z))|] ≤ 1

2
√
α
ρr(D

∗, G) ≤ −f(0)√
αλ

.
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APPENDIX C NETWORK ARCHITECTURE

We use a network architecture almost identical to WGAN-GP for consistency. The generator employs
pre-activation batch normalization with ReLU, while the discriminator uses instance normalization
with Leaky ReLU for better gradients. We have run experiments using a variety of architectures,
including DCGAN, which WGAN-GP builds off of. We find that the results are similar and decided
on the architecture from WGAN-GP for the computation efficiency due to the constant filter size.

Layer Output shape

Latent vector 128
Linear 2048
Reshape 4× 4× 128

Residual Block 4× 4× 128
Residual Block 4× 4× 128

Upsample 8× 8× 128
Residual Block 8× 8× 128
Upsample 16× 16× 128
Residual Block 16× 16× 128
Upsample 32× 32× 128
Residual Block 32× 32× 128

Conv 1x1 32× 32× 3
Sigmoid 32× 32× 3

(a) Generator architecture.

Layer Output shape

Image 32× 32× 3
Conv 3x3 32× 32× 128
Residual Block 32× 32× 128

Downsample 16× 16× 128
Residual Block 16× 16× 128
Downsample 8× 8× 128
Residual Block 8× 8× 128
Downsample 4× 4× 128
Residual Block 4× 4× 128

Residual Block 4× 4× 128
Residual Block 4× 4× 128
Residual Block 4× 4× 128

Global Average Pooling 128
Linear 1

(b) Discriminator architecture.

Table 3: GAN Architecture for our experiments on CIFAR-10 and CelebA. Note that CelebA follows
the same architecture, but the generator has a few more upsampling and processing blocks to output
an image of the correct size.

APPENDIX D USING A ROBUST LOSS

Here, we present additional quantitative and qualitative results for robust loss f , instead of discrimi-
nator. For all regularization, we penalize the gradient or robustness of the loss directly, instead of
the discriminator output. The results here agree with our theoretical analysis that a robust loss is
beneficial for the generator. However, here the gradient penalty performs worse for GAN and LSGAN,
which might be due to vanishing gradients in the loss function close to an optimal discriminator.

loss regularization

None GP AR

GAN 34.25 50.66 24.06
LSGAN 32.03 46.99 28.33
WGAN 41.58 26.20 28.42

(a) FID on CIFAR10

regularization

None GP AR

34.63 53.25 11.96
36.27 57.01 15.42
53.50 16.12 14.74

(b) FID on Celeb-A

Table 4: FID scores using a robust loss.
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APPENDIX E DIRAC-GAN

To better understand the effects that a robust loss or discriminator have on the GAN objective function,
we use the Dirac-GAN setup. Each example in Figure 5 shows the vector field of the given GAN
objective as a function of (θ, ψ), where the initial points θ0 = ψ0 = 1, and the global optimum
θ∗ = ψ∗ = 0. We ran simultanious updates, for an unconstrained GAN, a GAN with hard robustness
constraints, and with a robustness regularization. The unregularized GAN does not converge. The
hard constraint GAN comes within distance d of the global optimum, where d depends on the strength
of the robustness. The smaller ε the smaller is d. Finally, adversarial regularization leads to a
convergent Dirac-GAN objective. However, a thorough theoretical analysis is warranted to fully
understand this local convergence property.

2 1 0 1 2
2

1

0

1

2

(a) Unregularized GAN

2 1 0 1 2
2

1

0

1

2

(b) Robust GAN
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2

1

0

1

2

(c) Adv. Regularization (GAN)

2 1 0 1 2
2

1

0
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(d) Unregularized WGAN

2 1 0 1 2
2

1

0

1

2

(e) Robust WGAN

2 1 0 1 2
2

1

0

1

2

(f) Adv. Reg. (WGAN)

Figure 5: Convergence of Dirac-GAN using various regularization methods (or none) optimized with
alternating gradient descent.
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APPENDIX F EFFECTS OF USING DEFENSES AGAINST DIFFERENT ATTACKS

In our main experiments we use an FGM attack (scaled normalized gradient) for simplicity, as other
attacks have more hyperparameters such as number of iterations and constants. To show, that this is a
result not exclusive to FGM, we provide additional experiments using defenses against other popular
attacks - Fast Gradient Sign Method (FGSM), Projected Gradient Descent (PGD) and Carlini Wagner
(CW) using robust feature matching (RFM) and adversarial regularization (AR). As expected, these
defense techniques also provide improvements to the FID score.

FGSM FGSM PGD PGD CW CW
+AR +RFM +AR +RFM +AR +RFM

GAN (JS) 23.94 26.92 26.00 27.43 24.72 30.35
LSGAN 27.26 25.34 28.88 26.59 25.43 28.02
WGAN 29.80 25.22 30.16 29.32 40.57 27.90

Figure 6: FID for additional defenses on CIFAR-10. Results are compatible with Table 2(a) in
submission.
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APPENDIX G ADDITIONAL GENERATED SAMPLES

Finally, we present additional generations for various models.

(a) Robust discriminator using WGAN+RFM. (b) Robust loss using GAN+DS.

Figure 7: Comparison of the best models from training using a robust discriminator and robust loss.

Figure 8: Original GAN.

Figure 9: Original LSGAN.
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Figure 10: Original WGAN-GP.

(a) Robust discriminator using WGAN+RFM. (b) Robust loss using GAN+RFM.

Figure 11: Comparison of the best models from training using a robust discriminator and robust loss.

Figure 12: Original GAN.
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Figure 13: Original LSGAN.

Figure 14: Original WGAN-GP.
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