In [ ]:
%pylab inline
import torch
import sys
sys.path.append('..')
sys.path.append('../..')
from data import load
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
print('device = ', device)
In [ ]:
class ConvNet(torch.nn.Module):
    class Block(torch.nn.Module):
        def __init__(self, n_input, n_output, stride=1):
            super().__init__()
            self.net = torch.nn.Sequential(
              torch.nn.Conv2d(n_input, n_output, kernel_size=3, padding=1, stride=stride, bias=False),
              torch.nn.BatchNorm2d(n_output),
              torch.nn.ReLU(),
              torch.nn.Conv2d(n_output, n_output, kernel_size=3, padding=1, bias=False),
              torch.nn.BatchNorm2d(n_output),
              torch.nn.ReLU()
            )
        
        def forward(self, x):
            return self.net(x)
        
    def __init__(self, layers=[32,64,128], n_input_channels=3):
        super().__init__()
        L = [torch.nn.Conv2d(n_input_channels, 32, kernel_size=7, padding=3, stride=2, bias=False),
             torch.nn.BatchNorm2d(32),
             torch.nn.ReLU(),
             torch.nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            ]
        c = 32
        for l in layers:
            L.append(self.Block(c, l, stride=2))
            c = l
        self.network = torch.nn.Sequential(*L)
        self.classifier = torch.nn.Linear(c, 1)
    
    def forward(self, x):
        # Compute the features
        z = self.network(x)
        # Global average pooling
        z = z.mean(dim=[2,3])
        # Classify
        return self.classifier(z)[:,0]
    
net = ConvNet()
net.train()
print( net.training )
net.eval()
print( net.training )