Course material
Dog vs cat dataset
(used in most ipython notebooks)
Background
78 min
Background
pdf
key
2 min
Linear Algebra and Gradients
pdf
key
19 min
Probability, Likelihood, Sampling, and Expectation
pdf
key
16 min
Tensors
pdf
key
5 min
Data as Tensors
ipynb
html
9 min
Broadcasting
ipynb
html
11 min
Setup and Tensorboard
ipynb
html
15 min
Summary
pdf
key
2 min
First Example
107 min
Linear Classifiers and Regression
pdf
key
7 min
Linear Regression
pdf
key
6 min
Linear Classification
pdf
key
8 min
Linear Classification in Action
ipynb
html
13 min
Linear Multi-class Classification
pdf
key
11 min
Optimization and Gradient Descent
pdf
key
12 min
Gradient Descent in Action
ipynb
html
10 min
Computation Graphs
pdf
key
6 min
Building a Computation Graph
ipynb
html
10 min
Gradient Computation on Computation Graphs
pdf
key
10 min
Back Propagation in Action
ipynb
html
12 min
Summary
pdf
key
2 min
Deep Networks
135 min
Beyond Linear Models
pdf
key
2 min
Limitations of Linear Models
pdf
key
9 min
Non-linearities (ReLU)
pdf
key
11 min
Output Representations
pdf
key
9 min
Loss Functions
pdf
key
8 min
Building a Deep Network in PyTorch
ipynb
html
15 min
Optimization of Deep Networks
pdf
key
6 min
Stochastic Gradient Descent
pdf
key
11 min
Mini-batches
pdf
key
7 min
Momentum
pdf
key
7 min
Optimization in PyTorch
ipynb
html
20 min
What Is a Layer?
pdf
key
6 min
Activation Functions
pdf
key
15 min
Hyper-parameters
pdf
key
2 min
Summary, a Practical Guide to Deep Network Design
pdf
key
7 min
Convolutional Networks
172 min
Images and Structure
pdf
key
4 min
High Dimensional Inputs
pdf
key
4 min
Convolutions
pdf
key
22 min
Convolutional Network in PyTorch
ipynb
html
8 min
Convolutional Operators and Their Structure
pdf
key
21 min
Average Pooling
pdf
key
6 min
Max Pooling
pdf
key
6 min
Convolutional Operations in PyTorch
ipynb
html
7 min
Receptive Fields
pdf
key
12 min
Design Principles of Convolutional Networks
pdf
key
16 min
Building Efficient Convolutional Networks
ipynb
html
13 min
Deep Representations and Exploiting the Structure of the Data
pdf
key
10 min
Examining the Structure of Deep Networks
ipynb
html
15 min
Dilation
pdf
key
9 min
Up-Convolution
pdf
key
11 min
Summary
pdf
key
5 min
Making It Work
307 min
Practical Deep Learning
pdf
key
7 min
Looking at Your Data
pdf
key
6 min
Training, Validation, and Test Sets
pdf
key
14 min
Distribution of Data
ipynb
html
12 min
Network Initialization
pdf
key
12 min
Random Initialization
pdf
key
9 min
Xavier and Kaiming Initialization
pdf
key
20 min
Initialization in PyTorch
ipynb
html
5 min
Optimization
pdf
key
2 min
Input Normalization
pdf
key
12 min
Vanishing and Exploding Gradients
pdf
key
12 min
Normalization
pdf
key
2 min
Batch Normalization
pdf
key
9 min
Layer Normalization
pdf
key
3 min
Instance Normalization
pdf
key
3 min
Group Normalization and Local Response Normalization
pdf
key
6 min
Where to Add Normalizations?
pdf
key
8 min
Normalizations in PyTorch
ipynb
html
5 min
Residual Connections
pdf
key
13 min
Residual Connections in Practice
ipynb
html
8 min
Optimization Algorithms
pdf
key
10 min
Learning Rate
pdf
key
9 min
Learning Rate Schedules in PyTorch
ipynb
html
10 min
Open Problem: Pruning and Compression
pdf
key
12 min
Overfitting and How to Detect It
pdf
key
7 min
Early Stopping
pdf
key
3 min
Data Augmentation
pdf
key
12 min
Dropout
pdf
key
11 min
Weight Decay
pdf
key
6 min
Ensembles
pdf
key
8 min
Reducing Overfitting
repo
20 min
Transfer Learning
pdf
key
9 min
Open Problem: Understanding Generalization
pdf
key
13 min
Summary, a Practical Guide to Deep Network Optimization
pdf
key
11 min
Computer Vision
254 min
Computer Vision Tasks
pdf
key
15 min
Image Classification
pdf
key
13 min
Case Study: AlexNet
pdf
key
19 min
Case Study: VGG
pdf
key
11 min
1x1 Convolutions and Factorization
pdf
key
7 min
Case Study: Network in Network
pdf
key
3 min
Case Study: Inception Architecture
pdf
key
8 min
Case Study: Residual Networks
pdf
key
11 min
Factorization and Light-weight Networks
pdf
key
5 min
Case Study: MobileNet
pdf
key
5 min
Using Pre-trained Architectures
ipynb
html
11 min
Object Detection
pdf
key
11 min
Case Study: RCNN
pdf
key
13 min
Case Study: Faster RCNN
pdf
key
14 min
Case Study: RetinaNet
pdf
key
10 min
Segmentation
pdf
key
10 min
Case Study: FCN
pdf
key
11 min
Case Study: Dilated Convolutional Networks
pdf
key
10 min
Case Study: Mask RCNN
pdf
key
9 min
Open Problem: Object Representations
pdf
key
12 min
Temporal Models
pdf
key
6 min
3D Convolutions
pdf
key
5 min
2+1D Convolutions
pdf
key
3 min
Case Study: I3D
pdf
key
6 min
Open Problem: Effective Temporal Operations
pdf
key
10 min
Open Problem: What Should We Infer or Label?
pdf
key
12 min
Summary
pdf
key
4 min
Reinforcement Learning
210 min
Acting in an Environment
pdf
key
23 min
Acting in SuperTuxKart
ipynb
html
17 min
Imitation Learning
pdf
key
11 min
Dagger
pdf
key
8 min
Dagger vs Imitation Learning
ipynb
html
30 min
Non-differentiability
pdf
key
13 min
REINFORCE
pdf
key
11 min
Implementing REINFORCE
ipynb
html
30 min
Policy Gradient
pdf
key
20 min
Gradient Free Optimization
pdf
key
17 min
Gradient Free Optimization in PyTorch
ipynb
html
13 min
Open Problem: Structure Vs Data
pdf
key
13 min
Summary
pdf
key
5 min
Sequence Modeling
131 min
Sequence Models
pdf
key
6 min
Recurrent Neural Networks
pdf
key
16 min
Training Recurrent Networks
pdf
key
14 min
LSTMs and GRUs
pdf
key
15 min
Temporal Convolutions
pdf
key
16 min
Sampling in Sequence Models
pdf
key
10 min
Case Study: WaveNet
pdf
key
12 min
Sequence Models in PyTorch
ipynb
html
20 min
Attention and Transformers
pdf
key
16 min
Summary
pdf
key
6 min
Special Topics
156 min
Embedding Learning
38 min
Learning with an Expanding Set of Labels
pdf
key
4 min
Embedding Learning
pdf
key
7 min
Contrastive Losses
pdf
key
8 min
Triplet Losses
pdf
key
5 min
Selecting Training Examples
pdf
key
11 min
Summary
pdf
key
4 min
Generative Models
80 min
Image Generation
pdf
key
3 min
Autoencoders
pdf
key
9 min
Variational Autoencoders
pdf
key
12 min
Transforming Noise
pdf
key
4 min
Generative Adversarial Networks
pdf
key
11 min
Pix2Pix
pdf
key
5 min
CycleGan
pdf
key
10 min
Image Editing
pdf
key
5 min
Style Transfer
pdf
key
11 min
Open Problem: Understanding Generative Models and Invariances
pdf
key
8 min
Summary
pdf
key
2 min
Adversarial Attacks
38 min
Fooling Deep Networks
pdf
key
5 min
Finding Adversarial Examples
pdf
key
11 min
Defense Through Data Augmentation
pdf
key
5 min
White vs Black Box Attacks
pdf
key
7 min
Open Problem: Realistic Attacks and Defenses
pdf
key
9 min
Summary
pdf
key
2 min
Final Words
39 min
Open Problem: Bias, Fairness, and Ethics in Deep Learning
pdf
key
29 min
Course Summary and Further Topics
pdf
key
10 min